6 resultados para Euler-Bernoulli

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wir berechnen die Eulerzahl der 10-dimensionalen exzeptionellen irreduziblen symplektischen Mannigfaltigkeit, die von O Grady konstruiert wurde. Die Idee besteht darin, zunächst eine Lagrangefaserung zu konstruieren und dann die Eulerzahlen der Fasern zu berechnen. Es stellt sich heraus, dass fast alle Fasern die Eulerzahl 0 haben, und deswegen reduziert sich das Problem auf die Berechnung der Eulerzahlen der übrigen Fasern. Diese Fasern sind Modulräume von halbstabilen Garben auf singulären Kurven. Der Hauptteil dieser Dissertation ist der Berechnung der Eulerzahlen dieser Modulräume gewidmet. Diese Resultate sind von unabhängigem Interesse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Begriff "Bannerwolke" bezeichnet ein eindrucksvolles Phänomen aus dem Bereich der Gebirgsmeteorologie. Bannerwolken können gelegentlich im Hochgebirge im Bereich steiler Bergspitzen oder langgezogener Bergrücken, wie z.B. dem Matterhorn in den Schweizer Alpen oder dem Zugspitzgrat in den Bayrischen Alpen beobachtet werden. Der Begriff bezeichnet eine Banner- oder Fahnen-ähnliche Wolkenstruktur, welche an der windabgewandten Seite des Berges befestigt zu sein scheint, während die windzugewandte Seite vollkommen wolkenfrei ist. Bannerwolken fanden bislang, trotz ihres relativ häufigen Auftretens in der wissenschaftlichen Literatur kaum Beachtung. Entsprechend wenig ist über ihren Entstehungsmechanismus und insbesondere die relative Bedeutung dynamischer gegenüber thermodynamischer Prozesse bekannt. In der wissenschaftlichen Literatur wurden bislang 3 unterschiedliche Mechanismen postuliert, um die Entstehung von Bannerwolken zu erklären. Demnach entstehen Bannerwolken durch (a) den Bernoulli-Effekt, insbesondere durch die lokale adiabatische Kühlung hervorgerufen durch eine Druckabnahme entlang quasi-horizontal verlaufender, auf der windzugewandten Seite startender Trajektorien, (b) durch isobare Mischung bodennaher kälterer Luft mit wärmerer Luft aus höheren Schichten, oder (c) durch erzwungene Hebung im aufsteigenden Ast eines Leerotors. Ziel dieser Arbeit ist es, ein besseres physikalisches Verständnis für das Phänomen der Bannerwolke zu entwickeln. Das Hauptaugenmerk liegt auf dem dominierenden Entstehungsmechanismus, der relativen Bedeutung dynamischer und thermodynamischer Prozesse, sowie der Frage nach geeigneten meteorologischen Bedingungen. Zu diesem Zweck wurde ein neues Grobstruktursimulations (LES)-Modell entwickelt, welches geeignet ist turbulente, feuchte Strömungen in komplexem Terrain zu untersuchen. Das Modell baut auf einem bereits existierenden mesoskaligen (RANS) Modell auf. Im Rahmen dieser Arbeit wurde das neue Modell ausführlich gegen numerische Referenzlösungen und Windkanal-Daten verglichen. Die wesentlichen Ergebnisse werden diskutiert, um die Anwendbarkeit des Modells auf die vorliegende wissenschaftliche Fragestellung zu überprüfen und zu verdeutlichen. Die Strömung über eine idealisierte pyramidenförmige Bergspitze wurde für Froude-Zahlen Fr >> 1 sowohl auf Labor- als auch atmosphärischer Skala mit und ohne Berücksichtigung der Feuchtephysik untersucht. Die Simulationen zeigen, dass Bannerwolken ein primär dynamisches Phänomen darstellen. Sie entstehen im Lee steiler Bergspitzen durch dynamisch erzwungene Hebung. Die Simulationen bestätigen somit die Leerotor-Theorie. Aufgrund des stark asymmetrischen, Hindernis-induzierten Strömungsfeldes können Bannerwolken sogar im Falle horizontal homogener Anfangsbedingungen hinsichtlich Feuchte und Temperatur entstehen. Dies führte zu der neuen Erkenntnis, dass zusätzliche leeseitige Feuchtequellen, unterschiedliche Luftmassen in Luv und Lee, oder Strahlungseffekte keine notwendige Voraussetzung für die Entstehung einer Bannerwolke darstellen. Die Wahrscheinlichkeit der Bannerwolkenbildung steigt mit zunehmender Höhe und Steilheit des pyramidenförmigen Hindernisses und ist in erster Näherung unabhängig von dessen Orientierung zur Anströmung. Simulationen mit und ohne Berücksichtigung der Feuchtephysik machen deutlich, dass thermodynamische Prozesse (insbes. die Umsetzung latenter Wärme) für die Dynamik prototypischer (nicht-konvektiver) Bannerwolken zweitrangig ist. Die Verstärkung des aufsteigenden Astes im Lee und die resultierende Wolkenbildung, hervorgerufen durch die Freisetzung latenter Wärme, sind nahezu vernachlässigbar. Die Feuchtephysik induziert jedoch eine Dipol-ähnliche Struktur im Vertikalprofil der Brunt-Väisälä Frequenz, was zu einem moderaten Anstieg der leeseitigen Turbulenz führt. Es wird gezeigt, dass Gebirgswellen kein entscheidendes Ingredienz darstellen, um die Dynamik von Bannerwolken zu verstehen. Durch eine Verstärkung der Absinkbewegung im Lee, haben Gebirgswellen lediglich die Tendenz die horizontale Ausdehnung von Bannerwolken zu reduzieren. Bezüglich geeigneter meteorologischer Bedingungen zeigen die Simulationen, dass unter horizontal homogenen Anfangsbedingungen die äquivalentpotentielle Temperatur in der Anströmung mit der Höhe abnehmen muss. Es werden 3 notwendige und hinreichende Kriterien, basierend auf dynamischen und thermodynamischen Variablen vorgestellt, welche einen weiteren Einblick in geeignete meteorologische Bedingungen geben.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allgemein erlaubt adaptive Gitterverfeinerung eine Steigerung der Effizienz numerischer Simulationen ohne dabei die Genauigkeit des Ergebnisses signifikant zu verschlechtern. Es ist jedoch noch nicht erforscht, in welchen Bereichen des Rechengebietes die räumliche Auflösung tatsächlich vergröbert werden kann, ohne die Genauigkeit des Ergebnisses signifikant zu beeinflussen. Diese Frage wird hier für ein konkretes Beispiel von trockener atmosphärischer Konvektion untersucht, nämlich der Simulation von warmen Luftblasen. Zu diesem Zweck wird ein neuartiges numerisches Modell entwickelt, das auf diese spezielle Anwendung ausgerichtet ist. Die kompressiblen Euler-Gleichungen werden mit einer unstetigen Galerkin Methode gelöst. Die Zeitintegration geschieht mit einer semi-implizite Methode und die dynamische Adaptivität verwendet raumfüllende Kurven mit Hilfe der Funktionsbibliothek AMATOS. Das numerische Modell wird validiert mit Hilfe einer Konvergenzstudie und fünf Standard-Testfällen. Eine Methode zum Vergleich der Genauigkeit von Simulationen mit verschiedenen Verfeinerungsgebieten wird eingeführt, die ohne das Vorhandensein einer exakten Lösung auskommt. Im Wesentlichen geschieht dies durch den Vergleich von Eigenschaften der Lösung, die stark von der verwendeten räumlichen Auflösung abhängen. Im Fall einer aufsteigenden Warmluftblase ist der zusätzliche numerische Fehler durch die Verwendung der Adaptivität kleiner als 1% des gesamten numerischen Fehlers, wenn die adaptive Simulation mehr als 50% der Elemente einer uniformen hoch-aufgelösten Simulation verwendet. Entsprechend ist die adaptive Simulation fast doppelt so schnell wie die uniforme Simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn