2 resultados para ELECTROCHEMICAL TECHNIQUES
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Membrane proteins play a major role in every living cell. They are the key factors in the cell’s metabolism and in other functions, for example in cell-cell interaction, signal transduction, and transport of ions and nutrients. Cytochrome c oxidase (CcO), as one of the membrane proteins of the respiratory chain, plays a significant role in the energy transformation of higher organisms. CcO is a multi centered heme protein, utilizing redox energy to actively transport protons across the mitochondrial membrane. One aim of this dissertation is to investigate single steps in the mechanism of the ion transfer process coupled to electron transfer, which are not fully understood. The protein-tethered bilayer lipid membrane is a general approach to immobilize membrane proteins in an oriented fashion on a planar electrode embedded in a biomimetic membrane. This system enables the combination of electrochemical techniques with surface enhanced resonance Raman (SERRS), surface enhanced reflection absorption infrared (SEIRAS), and surface plasmon spectroscopy to study protein mediated electron and ion transport processes. The orientation of the enzymes within the surface confined architecture can be controlled by specific site-mutations, i.e. the insertion of a poly-histidine tag to different subunits of the enzyme. CcO can, thus, be oriented uniformly with its natural electron pathway entry pointing either towards or away from the electrode surface. The first orientation allows an ultra-fast direct electron transfer(ET) into the protein, not provided by conventional systems, which can be leveraged to study intrinsic charge transfer processes. The second orientation permits to study the interaction with its natural electron donor cytochrome c. Electrochemical and SERR measurements show conclusively that the redox site structure and the activity of the surface confined enzyme are preserved. Therefore, this biomimetic system offers a unique platform to study the kinetics of the ET processes in order to clarify mechanistic properties of the enzyme. Highly sensitive and ultra fast electrochemical techniques allow the separation of ET steps between all four redox centres including the determination of ET rates. Furthermore, proton transfer coupled to ET could be directly measured and discriminated from other ion transfer processes, revealing novel mechanistic information of the proton transfer mechanism of cytochrome c oxidase. In order to study the kinetics of the ET inside the protein, including the catalytic center, time resolved SEIRAS and SERRS measurements were performed to gain more insight into the structural and coordination changes of the heme environment. The electrical behaviour of tethered membrane systems and membrane intrinsic proteins as well as related charge transfer processes were simulated by solving the respective sets of differential equations, utilizing a software package called SPICE. This helps to understand charge transfer processes across membranes and to develop models that can help to elucidate mechanisms of complex enzymatic processes.
Resumo:
Biological membranes are one of the vital key elements of life but are also highly complex architectures. Therefore, various model membrane systems have been developed to enable systematic investigations of different membrane related processes. A biomimetic model architecture should provide a simplified system, which allows for systematic investigation of the membrane while maintaining the essential membrane characteristics such as membrane fluidity or electrical sealing properties. This work has been focused on two complementary parts. In a first part, the behaviour of the whey protein ß-lactoglobulin (ßlg) at a membrane interface has been investigated. Protein-lipid interactions have been studied using Langmuir monolayers at the air-water interface and tethered bilayer lipid membranes. A combination of different surface analytical techniques such as surface plasmon spectroscopy, neutron reflectivity and electrochemical techniques allowed for a detailed analysis of the underlying processes. Those experiments showed that the protein adsorbed in native confirmation, slightly flattened, to hydrophobic monolayers. If hydrophilic bilayers with defects were present, ßlg penetrated the upper layer. Interactions with phospholipids were only observed if the protein was denatured beforehand. Experiments at the air-water interface showed a more rigid conformation of the protein at acidic pH compared to alkaline pH. In the second part of this work, the structure of different model membrane systems has been investigated. Solid supported membrane systems have been established as powerful biomimetic architectures, which allow for the systematic investigation of various membrane related processes. Additionally, these systems have been proposed for biosensing applications. Tethered bilayer lipid membranes (tBLMS) are one type of solid supported membranes. The structure of the anchor lipid that tethers the membrane to the solid support has a significant impact on the membrane properties. Especially the sub-membrane part, which is defined by the spacer group, is important for the biological activity of incorporated membrane proteins. Various anchor lipids have been synthesised with different spacer and anchor groups. An increase of the spacer length led to a direct increase of the water reservoir beneath the membrane. However, this elongation also resulted in an amplified roughness of the monolayer and subsequently to diminished mechanical and electrical bilayer qualities. Additionally, a cholesterol-spacer had been designed to modulate the membrane fluidity. Model membrane systems with additional cholesterol-spacer or upper bilayer leaflets with additional cholesterol also exhibited an increased water reservoir with only slightly diminished mechanical and electrical abilities. Both parts show that tBLMs are very effective model systems that can be applied as biomimetic platforms to study for example lipid-protein interactions. They also enable the incorporation of ion channels and allow for potential biosensing application.