9 resultados para Dunkl Kernel
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.
Resumo:
Präsentiert wird ein vollständiger, exakter und effizienter Algorithmus zur Berechnung des Nachbarschaftsgraphen eines Arrangements von Quadriken (Algebraische Flächen vom Grad 2). Dies ist ein wichtiger Schritt auf dem Weg zur Berechnung des vollen 3D Arrangements. Dabei greifen wir auf eine bereits existierende Implementierung zur Berechnung der exakten Parametrisierung der Schnittkurve von zwei Quadriken zurück. Somit ist es möglich, die exakten Parameterwerte der Schnittpunkte zu bestimmen, diese entlang der Kurven zu sortieren und den Nachbarschaftsgraphen zu berechnen. Wir bezeichnen unsere Implementierung als vollständig, da sie auch die Behandlung aller Sonderfälle wie singulärer oder tangentialer Schnittpunkte einschließt. Sie ist exakt, da immer das mathematisch korrekte Ergebnis berechnet wird. Und schließlich bezeichnen wir unsere Implementierung als effizient, da sie im Vergleich mit dem einzigen bisher implementierten Ansatz gut abschneidet. Implementiert wurde unser Ansatz im Rahmen des Projektes EXACUS. Das zentrale Ziel von EXACUS ist es, einen Prototypen eines zuverlässigen und leistungsfähigen CAD Geometriekerns zu entwickeln. Obwohl wir das Design unserer Bibliothek als prototypisch bezeichnen, legen wir dennoch größten Wert auf Vollständigkeit, Exaktheit, Effizienz, Dokumentation und Wiederverwendbarkeit. Über den eigentlich Beitrag zu EXACUS hinaus, hatte der hier vorgestellte Ansatz durch seine besonderen Anforderungen auch wesentlichen Einfluss auf grundlegende Teile von EXACUS. Im Besonderen hat diese Arbeit zur generischen Unterstützung der Zahlentypen und der Verwendung modularer Methoden innerhalb von EXACUS beigetragen. Im Rahmen der derzeitigen Integration von EXACUS in CGAL wurden diese Teile bereits erfolgreich in ausgereifte CGAL Pakete weiterentwickelt.
Resumo:
Die Untersuchung von dissipativen Quantensystemen erm¨oglicht es, Quantenph¨anomene auch auf makroskopischen L¨angenskalen zu beobachten. Das in dieser Dissertation gew¨ahlte mikroskopische Modell erlaubt es, den bisher nur ph¨anomenologisch zug¨anglichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu untersuchen. Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anharmonische Freiheitsgrade gekoppelt sind. Die F¨alle einer, respektive zwei anharmonischer Bindungen werden in dieser Arbeit explizit betrachtet. Hierf¨ur wird eine analytische Trennung der harmonischen von den anharmonischen Freiheitsgraden auf zwei verschiedenen Wegen durchgef¨uhrt. Das anharmonische Potential wird als symmetrisches Doppelmuldenpotential gew¨ahlt, welches mit Hilfe der Wick Rotation die Berechnung der ¨Uberg¨ange zwischen beiden Minima erlaubt. Das Eliminieren der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon Pfadintegral-Formalismus [21]. In dieser Arbeit wird zuerst die Positionsabh¨angigkeit einer anharmonischen Bindung im Tunnelverhalten untersucht. F¨ur den Fall einer fernab von den R¨andern lokalisierten anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei der Temperatur T = 0 zu einem Phasen¨ubergang in Abh¨angigkeit einer kritischen Kopplungskonstanten Ccrit f¨uhrt. Dieser Phasen¨ubergang wurde bereits in rein ph¨anomenologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf das Ising-Modell [26] erkl¨art. Wenn die anharmonische Bindung jedoch an einem der R¨ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden anharmonischen Bindungen abh¨angigen Zeit tD ein ¨Ubergang von Ohmscher zu super- Ohmscher Dissipation auf, welche im Kern KM(τ ) klar sichtbar ist. F¨ur zwei anharmonische Bindungen spielt deren indirekteWechselwirkung eine entscheidende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t) analog zu [14], jedoch f¨ur zwei anharmonische Bindungen, berechnet. Als Resultat erhalten wir entweder Ohmsche Dissipation f¨ur den Fall, dass beide anharmonischen Bindungen ihre Gesamtl¨ange ¨andern, oder super-Ohmsche Dissipation, wenn beide anharmonischen Bindungen durch das Tunneln ihre Gesamtl¨ange nicht ¨andern.
Resumo:
In this thesis we consider systems of finitely many particles moving on paths given by a strong Markov process and undergoing branching and reproduction at random times. The branching rate of a particle, its number of offspring and their spatial distribution are allowed to depend on the particle's position and possibly on the configuration of coexisting particles. In addition there is immigration of new particles, with the rate of immigration and the distribution of immigrants possibly depending on the configuration of pre-existing particles as well. In the first two chapters of this work, we concentrate on the case that the joint motion of particles is governed by a diffusion with interacting components. The resulting process of particle configurations was studied by E. Löcherbach (2002, 2004) and is known as a branching diffusion with immigration (BDI). Chapter 1 contains a detailed introduction of the basic model assumptions, in particular an assumption of ergodicity which guarantees that the BDI process is positive Harris recurrent with finite invariant measure on the configuration space. This object and a closely related quantity, namely the invariant occupation measure on the single-particle space, are investigated in Chapter 2 where we study the problem of the existence of Lebesgue-densities with nice regularity properties. For example, it turns out that the existence of a continuous density for the invariant measure depends on the mechanism by which newborn particles are distributed in space, namely whether branching particles reproduce at their death position or their offspring are distributed according to an absolutely continuous transition kernel. In Chapter 3, we assume that the quantities defining the model depend only on the spatial position but not on the configuration of coexisting particles. In this framework (which was considered by Höpfner and Löcherbach (2005) in the special case that branching particles reproduce at their death position), the particle motions are independent, and we can allow for more general Markov processes instead of diffusions. The resulting configuration process is a branching Markov process in the sense introduced by Ikeda, Nagasawa and Watanabe (1968), complemented by an immigration mechanism. Generalizing results obtained by Höpfner and Löcherbach (2005), we give sufficient conditions for ergodicity in the sense of positive recurrence of the configuration process and finiteness of the invariant occupation measure in the case of general particle motions and offspring distributions.
Resumo:
Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um Null besitzt. Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen, Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diagonaldominante Block-Operator-Matrizen. Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Operatoren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht. In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht. Wir wenden die Darstellungssätze auf durch (grad u, h() grad v) gegebene Formen an, wobei Vorzeichen-indefinite Koeffzienten-Matrizen h() zugelassen sind. Als ein Resultat werden selbstadjungierte indefinite Differentialoperatoren div h() grad mit homogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und links-indefinite Sturm-Liouville Operatoren.
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.
Resumo:
Am vertikalen Windkanal der Johannes Gutenberg-Universität Mainz wurden physikalische und chemische Bereifungsexperimente durchgeführt. Dabei lagen die Umgebungstemperaturen bei allen Experimenten zwischen etwa -15 und -5°C und der Flüssigwassergehalt erstreckte sich von 0,9 bis etwa 1,6g/m³, typische Bedingungen für Mischphasenwolken in denen Bereifung stattfindet. Oberflächentemperaturmessungen an wachsenden hängenden Graupelpartikeln zeigten, dass während der Experimente trockene Wachstumsbedingungen herrschten.rnZunächst wurde das Graupelwachstum an in einer laminaren Strömung frei schwebenden Eispartikeln mit Anfangsradien zwischen 290 und 380µm, die mit flüssigen unterkühlten Wolkentröpfchen bereift wurden, studiert. Ziel war es, den Kollektionskern aus der Massenzunahme des bereiften Eispartikels und dem mittleren Flüssigwassergehalt während des Wachstumsexperimentes zu bestimmen. Die ermittelten Werte für die Kollektionskerne der bereiften Eispartikel erstreckten sich von 0,9 bis 2,3cm³/s in Abhängigkeit ihres Kollektorimpulses (Masse * Fallgeschwindigkeit des bereifenden Graupels), der zwischen 0,04 und 0,10gcm/s lag. Bei den Experimenten zeigte sich, dass die hier gemessenen Kollektionskerne höher waren im Vergleich mit Kollektionskernen flüssiger Tropfen untereinander. Aus den aktuellen Ergebnissen dieser Arbeit und der vorhandenen Literaturwerte wurde ein empirischer Faktor entwickelt, der von dem Wolkentröpfchenradius abhängig ist und diesen Unterschied beschreibt. Für die untersuchten Größenbereiche von Kollektorpartikel und flüssigen Tröpfchen können die korrigierten Kollektionskernwerte in Wolkenmodelle für die entsprechenden Größen eingebunden werden.rnBei den chemischen Experimenten zu dieser Arbeit wurde die Spurenstoffaufnahme verschiedener atmosphärischer Spurengase (HNO3, HCl, H2O2, NH3 und SO2) während der Bereifung untersucht. Diese Experimente mussten aus technischen Gründen mit hängenden Eispartikeln, dendritischen Eiskristallen und Schneeflocken, bereift mit flüssigen Wolkenlösungströpfchen, durchgeführt werden.rnDie Konzentrationen der Lösung, aus der die Wolkentröpfchen mit Hilfe von Zweistoffdüsen erzeugt wurden, lagen zwischen 1 und 120mg/l. Für die Experimente mit Ammoniak und Schwefeldioxid wurden Konzentrationen zwischen 1 und 22mg/l verwendet. Das Schmelzwasser der bereiften hängenden Graupel und Schneeflocken wurden ionenchromatographisch analysiert und zusammen mit der bekannten Konzentration der bereifenden Wolkentröpfchen konnte der Retentionskoeffizient für jeden Spurenstoff bestimmt werden. Er gibt die Menge an Spurenstoff an, die bei der Phasenumwandlung von flüssig zu fest in die Eisphase übergeht. Salpetersäure und Salzsäure waren nahezu vollständig retiniert (Mittelwerte der gesamten Experimente entsprechend 99±8% und 100±9%). Für Wasserstoffperoxid wurde ein mittlerer Retentionskoeffizient von 65±17% bestimmt. rnDer mittlere Retentionskoeffizient von Ammoniak ergab sich unabhängig vom Flüssigwassergehalt zu 92±21%, während sich für Schwefeldioxid 53±10% für niedrige und 29±7% für hohe Flüssigphasenkonzentrationen ergaben. Bei einigen der untersuchten Spurenstoffe wurde eine Temperaturabhängigkeit beobachtet und wenn möglich durch Parametrisierungen beschrieben.rn