6 resultados para Discrete lattices
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die wichtigste Klasse zeotyper Verbindungen sind die Thio- und Selenophosphate der Übergangsmetalle. Ziel dieser Dissertation war die Darstellung und Charakterisierung neuer Uranthiophosphate. Die dargestellten Verbindungen enthalten vierwertige Urankationen, die von acht Schwefelatomen koordiniert sind. Da die enthaltenen Thiophosphatanionen in den meisten Fällen als zweizähnige Liganden fungieren, entstehen dreidimensionale Netzwerke mit pseudotetraedrisch koordinierten Metallzentren. In der Verbindung U(P2S6)2 durchdringen sich drei identische diamantartige Netzwerke, wodurch optimale Raumerfüllung erreicht wird. Die Einführung von Alkalimetallkationen in das System führt zu einer Vielzahl neuer Verbindungen, deren Eigenschaften durch die Stöchiometrie der Edukte und durch die Kationenradien bestimmt werden. Beispielsweise enthält die Kristallstruktur von Na2U(PS4)2 zweidimensionale anionische [U(PS4)2]n-Schichten, während die analoge Verbindung CsLiU(PS4)2 eine poröse dreidimensionale Netzwerkstruktur besitzt. Der Vergleich der untersuchten quaternären und quinären Verbindungen zeigt, dass eine Korrelation zwischen dem Kationenradius und dem Durchmesser der Poren besteht. Dies lässt auf eine Templatfunktion der Alkalimetallkationen beim Aufbau der anionischen Teilstruktur schließen. Die neuen Verbindungen wurden aus reaktiven Polysulfidschmelzflüssen oder durch Auflösen amorpher Vorläufer in Alkalimetallchloridschmelzen synthetisiert. Die Kristallstrukturen wurden durch Einkristall-Röntgenmethoden bestimmt. Ein Vergleich der magnetischen Eigenschaften der Verbindungen beweist, dass in allen untersuchten Fällen U(IV) vorliegt. Die Substanzen zeigen paramagnetisches Verhalten, in UP2S7 und CsLiU(PS4)2 sind außerdem antiferromagnetische Wechselwirkungen zwischen benachbarten Uranatomen nachweisbar.
Resumo:
This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.
Resumo:
This thesis describes experiments which investigate ultracold atom ensembles in an optical lattice. Such quantum gases are powerful models for solid state physics. Several novel methods are demonstrated that probe the special properties of strongly correlated states in lattice potentials. Of these, quantum noise spectroscopy reveals spatial correlations in such states, which are hidden when using the usual methods of probing atomic gases. Another spectroscopic technique makes it possible to demonstrate the existence of a shell structure of regions with constant densities. Such coexisting phases separated by sharp boundaries had been theoretically predicted for the Mott insulating state. The tunneling processes in the optical lattice in the strongly correlated regime are probed by preparing the ensemble in an optical superlattice potential. This allows the time-resolved observation of the tunneling dynamics, and makes it possible to directly identify correlated tunneling processes.
Resumo:
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model.rnrnThe usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis.rnrnAnalogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe domain wall formation, antiferromagnetically induced density shifts, and we show the relevant role of spin-imbalance for antiferromagnetic states.rnrnSince the first step for understanding the physics of the examined models was the application of a mean field approximation, we analyze the effect of including the second order terms of the weak coupling perturbation expansion for the repulsive model. We show that our results survive the influence of quantum fluctuations and show that the renormalization factors for order parameters and critical temperatures lead to a weaker influence of the fluctuations on the results in finite sized systems than on the results in the thermodynamical limit. Furthermore, in the context of second order theory we address the question whether results obtained in the dynamical mean field theory (DMFT), which is meanwhile a frequently used method for describing trapped systems, survive the effect of the non-local Feynman diagrams neglected in DMFT.
Resumo:
In this thesis, we investigate mixtures of quantum degenerate Bose and Fermi gases of neutral atoms in threedimensional optical lattices. Feshbach resonances allow to control interspecies interactions in these systems precisely, by preparing suitable combinations of internal atomic states and applying external magnetic fields. This way, the system behaviour can be tuned continuously from mutual transparency to strongly interacting correlated phases, up to the stability boundary.rnThe starting point for these investigations is the spin-polarized fermionic band insulator. The properties of this non-interacting system are fully determined by the Pauli exclusion principle for the occupation of states in the lattice. A striking demonstration of the latter can be found in the antibunching of the density-density correlation of atoms released from the lattice. If bosonic atoms are added to this system, isolated heteronuclear molecules can be formed on the lattice sites via radio-frequency stimulation. The efficiency of this process hints at a modification of the atom number distribution over the lattice caused by interspecies interaction.rnIn the following, we investigate systems with tunable interspecies interaction. To this end, a method is developed which allows to assess the various contributions to the system Hamiltonian both qualitatively and quantitatively by following the quantum phase diffusion of the bosonic matter wave.rnBesides a modification of occupation number statistics, these measurements show a significant renormalization of the bosonic Hubbard parameters. The final part of the thesis considers the implications of this renormalization effect on the many particle physics in the mixture. Here, we demonstrate how the quantum phase transition from a bosonic superfluid to a Mott insulator state is shifted towards considerably shallower lattices due to renormalization.
Resumo:
This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.