7 resultados para Deterministic Expander

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this doctoral thesis is to prove existence for a mutually catalytic random walk with infinite branching rate on countably many sites. The process is defined as a weak limit of an approximating family of processes. An approximating process is constructed by adding jumps to a deterministic migration on an equidistant time grid. As law of jumps we need to choose the invariant probability measure of the mutually catalytic random walk with a finite branching rate in the recurrent regime. This model was introduced by Dawson and Perkins (1998) and this thesis relies heavily on their work. Due to the properties of this invariant distribution, which is in fact the exit distribution of planar Brownian motion from the first quadrant, it is possible to establish a martingale problem for the weak limit of any convergent sequence of approximating processes. We can prove a duality relation for the solution to the mentioned martingale problem, which goes back to Mytnik (1996) in the case of finite rate branching, and this duality gives rise to weak uniqueness for the solution to the martingale problem. Using standard arguments we can show that this solution is in fact a Feller process and it has the strong Markov property. For the case of only one site we prove that the model we have constructed is the limit of finite rate mutually catalytic branching processes as the branching rate approaches infinity. Therefore, it seems naturalto refer to the above model as an infinite rate branching process. However, a result for convergence on infinitely many sites remains open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancing the sensitivity of nuclear magnetic resonance measurements via hyperpolarization techniques like parahydrogen induced polarization (PHIP) is of high interest for spectroscopic investigations. Parahydrogen induced polarization is a chemical method, which makes use of the correlation between nuclear spins in parahydrogen to create hyperpolarized molecules. The key feature of this technique is the pairwise and simultaneous transfer of the two hydrogen atoms of parahydrogen to a double or triple bond resulting in a population of the Zeeman energy levels different from the Boltzmann equation. The obtained hyperpolarization results in antiphase peaks in the NMR spectrum with high intensities. Due to these strong NMR signals, this method finds arnlot of applications in chemistry e.g. the characterization of short-lived reaction intermediates. Also in medicine it opens up the possibility to boost the sensitivity of medical diagnostics via magnetic labeling of active contrast agents. Thus, further examination and optimization of the PHIP technique is of significant importance in order to achieve the highest possible sensitivity gain.rnrnIn this work, different aspects concerning PHIP were studied with respect to its chemical and spectroscopic background. The first part of this work mainly focused on optimizing the PHIP technique by investigating different catalyst systems and developing new setups for the parahydrogenation. Further examinations facilitated the transfer of the generated polarization from the protons to heteronuclei like 13C. The second part of this thesis examined the possibility to transfer these results to different biologically active compounds to enable their later application in medical diagnostics. Onerngroup of interesting substances is represented by metabolites or neurotransmitters in mammalian cells. Other interesting substances are clinically relevant drugs like a barbituric acid derivative or antidepressant drugs like citalopram which were investigated with regard to their applicability for the PHIP technique and the possibility to achievernpolarization transfer to 13C nuclei. The last investigated substrate is a polymerizable monomer whose polymer was used as a blood plasma expander for trauma victims after the first half of the 20th century. In this case, the utility of the monomer for the PHIP technique as a basis for later investigations of a polymerization reaction using hyperpolarized monomers was examined.rnrnHence, this thesis covers the optimization of the PHIP technology, hereby combining different fields of research like chemical and spectroscopical aspects, and transfers the results to applications of real biologally acitve compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I present the realization of a fiber-optical interface using optically trapped cesium atoms, which is an efficient tool for coupling light and atoms. The basic principle of the presented scheme relies on the trapping of neutral cesium atoms in a two-color evanescent field surrounding a nanofiber. The strong confinement of the fiber guided light, which also protrudes outside the nanofiber, provides strong confinement of the atoms as well as efficient coupling to near-resonant light propagating through the fiber. In chapter 1, the necessary physical and mathematical background describing the propagation of light in an optical fiber is presented. The exact solution of Maxwell’s equations allows us to model fiber-guided light fields which give rise to the trapping potentials and the atom-light coupling in the close vicinity of a nanofiber. Chapter 2 gives the theoretical background of light-atom interaction. A quantum mechanical model of the light-induced shifts of the relevant atomic levels is reviewed, which allows us to quantify the perturbation of the atomic states due to the presence of the trapping light-fields. The experimental realization of the fiber-based atom trap is the focus of chapter 3. Here, I analyze the properties of the fiber-based trap in terms of the confinement of the atoms and the impact of several heating mechanisms. Furthermore, I demonstrate the transportation of the trapped atoms, as a first step towards a deterministic delivery of individual atoms. In chapter 4, I present the successful interfacing of the trapped atomic ensemble and fiber-guided light. Three different approaches are discussed, i.e., those involving the measurement of either near-resonant scattering in absorption or the emission into the guided mode of the nanofiber. In the analysis of the spectroscopic properties of the trapped ensemble we find good agreement with the prediction of theoretical model discussed in chapter 2. In addition, I introduce a non-destructive scheme for the interrogation of the atoms states, which is sensitive to phase shifts of far-detuned fiber-guided light interacting with the trapped atoms. The inherent birefringence in our system, induced by the atoms, changes the state of polarization of the probe light and can be thus detected via a Stokes vector measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wir betrachten einen zeitlich inhomogenen Diffusionsprozess, der durch eine stochastische Differentialgleichung gegeben wird, deren Driftterm ein deterministisches T-periodisches Signal beinhaltet, dessen Periodizität bekannt ist. Dieses Signal sei in einem Besovraum enthalten. Wir schätzen es mit Hilfe eines nichtparametrischen Waveletschätzers. Unser Schätzer ist von einem Wavelet-Dichteschätzer mit Thresholding inspiriert, der 1996 in einem klassischen iid-Modell von Donoho, Johnstone, Kerkyacharian und Picard konstruiert wurde. Unter gewissen Ergodizitätsvoraussetzungen an den Prozess können wir nichtparametrische Konvergenzraten angegeben, die bis auf einen logarithmischen Term den Raten im klassischen iid-Fall entsprechen. Diese Raten werden mit Hilfe von Orakel-Ungleichungen gezeigt, die auf Ergebnissen über Markovketten in diskreter Zeit von Clémencon, 2001, beruhen. Außerdem betrachten wir einen technisch einfacheren Spezialfall und zeigen einige Computersimulationen dieses Schätzers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn