5 resultados para Demóstenes, ca. 384-322 a.C
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Gegenstand dieser Arbeit war die Untersuchung von metallischen gemischtvalenten Manganaten und magnetischen Doppelperowskiten. Aufgrund ihres großen negativen Magnetowiderstandes (MW) sind diese halbmetallischen Oxide interessant für mögliche technische Anwendungen, z.B. als Leseköpfe in Festplatten. Es wurden die kristallographischen, elektronischen und magnetischen Eigenschaften von epitaktischen Dünnschichten und polykristallinen Pulverproben bestimmt.Epitaktische Dünnschichten der Verbindungen La0.67Ca<SUB>0.33MnO3 und La0.67Sr0.33MnO3 wurdenmit Kaltkathodenzerstäubung und Laserablation auf einkristallinen Substraten wie SrTiO3abgeschieden. Mit Hall-Effekt Messungen wurde ein Zusammenbruch der Ladungsträgerdichte bei der Curie-Temperatur TC beobachtet.Mit dem Wechsel des Dotierungsatoms A von Ca (TC=232 K) zu Sr (TC=345 K)in La0.67A0.33MnO3 konnte die Feldsensitivität des Widerstandes bei Raumtemperatur gesteigert werden. Um die Sensitivität weiter zu erhöhen wurde die hohe Spinpolarisation von nahezu 100% in Tunnelexperimenten ausgenutzt. Dazu wurden biepitaktische La0.67Ca<SUB>0.33MnO3 Schichten auf SrTiO3 Bikristallsubstraten hergestellt. Die Abhängigkeit des Tunnelmagnetowiderstandes (TMW) vom magnetischen Feld, Temperatur und Strum war ein Schwerpunkt der Untersuchung. Mittels spinpolarisierten Tunnelns durch die künstliche Korngrenze konnte ein hysteretischer TMW von 70% bei 4 K in kleinen Magnetfeldern von 120 Oe gemessen werden. Eine weitere magnetische Oxidverbindung, der Doppelperowskit Sr2FeMoO6 miteine Curie-Temperatur oberhalb 400 K und einem großen MW wurde mittels Laserablation hergestellt. Die Proben zeigten erstmals das Sättigunsmoment, welches von einer idealen ferrimagnetischen Anordnung der Fe und Mo Ionen erwartet wird. Mit Hilfe von Magnetotransportmessungen und Röntgendiffraktometrie konnte eine Abhängigkeit zwischen Kristallstruktur (Ordnung oder Unordnung im Fe, Mo Untergitter) und elektronischem Transport (metallisch oder halbleitend) aufgedeckt werden.Eine zweiter Doppelperowskit Ca<SUB>2FeReO6 wurde im Detail als Pulverprobe untersucht. Diese Verbindung besitzt die höchste Curie-Temperatur von 540 K, die bis jetzt in magnetischen Perowskiten gefunden wurde. Mit Neutronenstreuung wurde eine verzerrte monoklinische Struktur und eine Phasenseparation aufgedeckt.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes RNA Virus aus der Familie der Flaviviridae. Sein Genom kodiert für ein ca. 3000 Aminosäuren langes Polyprotein, welches co- und posttranslational in seine funktionellen Einheiten gespalten wird. Eines dieser viralen Proteine ist NS5A. Es handelt sich hierbei um ein stark phosphoryliertes Protein, das eine amphipatische α-Helix im Amino-Terminus trägt, welche für die Membran-Assoziation von NS5A verantwortlich ist. Welche Rolle die Phosphorylierung für die Funktion des Proteins spielt, bzw. welche Funktion NS5A überhaupt ausübt, ist zur Zeit noch unklar. Beobachtungen lassen Vermutungen über eine Funktion von NS5A bei der Resistenz infizierter Zellen gegenüber Interferon-alpha zu. Weiterhin wird vermutet, das NS5A als Komponente des membranständigen HCV Replikasekomplexes an der RNA Replikation beteiligt ist. Das Ziel dieser Doktorarbeit war es, die Funktion von NS5A für die RNA Replikation zu untersuchen. Zu diesem Zweck wurde eine Serie von Phosphorylierungsstellen-Mutanten generiert, die auf Ihre Replikationsfähigkeit und den Phosphorylierungsstatus hin untersucht wurden. Wir fanden, dass bestimmte Serin-Substitutionen im Zentrum von NS5A zu einer gesteigerten RNA Replikation führten, bei gleichzeitig reduzierter NS5A Hyperphosphorylierung. Weiterhin studierten wir den Einfluß von Mutationen in der Amino-terminalen amphipatischen α-Helix von NS5A auf die RNA-Replikation, sowie Phosphorylierung und subzelluläre Lokalisation des Proteins. Wir fanden, dass geringfügige strukturelle Veränderungen der amphipatischen Helix zu einer veränderten subzellulären Lokalisation von NS5A führten, was mit einer reduzierten oder komplett inhibierten RNA Replikation einherging. Zudem interferierten die strukturellen Veränderungen mit der Hyperphosphorylierung des Proteins, was den Schluß nahe legt, dass die amphipatische Helix eine wichtige strukturelle Komponente des Proteins darstellt, die für die korrekte Faltung und Phosphorylierung des Proteins essentiell ist. Als weitere Aspekte wurden die Trans-Komplementationsfähigkeit der verschiedenen viralen Komponenten des HCV Replikasekomplexes untersucht, sowie zelluläre Interaktionspartner von NS5A identifiziert. Zusammenfassend zeigen die Ergebnisse dieser Doktorarbeit, dass NS5A eine wichtige Rolle bei der RNA-Replikation spielt. Diese Funktion wird wahrscheinlich über den Phosphorylierungszustand des Proteins reguliert.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.
Resumo:
Ziel dieser Arbeit war die Pr"{a}paration, Charakterisierung und Untersuchung der elektronischen Eigenschaften von d"{u}nnen Schichten des Hochtemperatursupraleiters HgReBa$_{2}$Ca$_{n-1}$Cu$_{n}$O$_{y}$, die mittels gepulster Laser-Deposition hergestellt wurden. Die HgRe1212-Filme zeigen in der AC-Suszeptibilit"{a}t einen scharfen "{U}bergang in die supraleitende Phase bei 124 K mit einer "{U}bergangsbreite von 2 K. Die resistiven "{U}berg"{a}nge der Proben wurden mit zunehmender St"{a}rke des externen Magnetfeldes breiter. Aus der Steigung der Arrheniusplots konnte die Aktivierungsenergie f"{u}r verschiedene Feldst"{a}rken bestimmt werden. Weiterhin wurde die Winkelabh"{a}ngigkeit des Depinning-Feldes $B_{dp}(theta)$ der Filme gemessen. Hieraus wurde ein Anisotropiewert von $gamma$ = 7.7 bei 105 K ermittelt. Dies ist relevant, um den f"{u}r Anwendungen wichtigen Bereich im $T$-$B$-$theta$-Phasenraum des Materials absch"{a}tzen zu k"{o}nnen. Die kritische Stromdichte $J_{c}$ der d"{u}nnen Filme aus HgRe-1212 wurde mit Hilfe eines SQUID-Magnetometers gemessen. Die entsprechenden $M$-$H$ Kurven bzw. das magnetische Moment dieser Filme wurde f"{u}r einen weiten Temperatur- und Feldbereich mit einem magnetischen Feld senkrecht zum Film aufgenommen. F"{u}r einen HgRe-1212-Film konnte bei 5 K eine kritische Stromdichte von 1.2 x 10$^{7}$ A/cm$^{2}$ und etwa 2 x 10$^{6}$ A/cm$^{2}$ bei 77 K ermittelt werden. Es wurde die Magnetfeld- und die Temperaturabh"{a}ngigkeit des Hall-Effekts im normalleitenden und im Mischzustand in Magnetfeldern senkrecht zur $ab$-Ebene bis zu 12 T gemessen. Oberhalb der kritischen Temperatur $T_{c}$ steigt der longitudinale spezifische Widerstand $rho_{xx}$ linear mit der Temperatur, w"{a}hrend der spezifische Hall-Widerstand $rho_{yx}$ sich umgekehrt proportional zur Temperatur "{a}ndert. In der N"{a}he von $T_{c}$ und in Feldern kleiner als 3 T wurde eine doppelte Vorzeichen"{a}nderung des spezifischen Hall-Widerstandes beobachtet. Der Hall-Winkel im Normalzustand, cot $theta_{H}= alpha T^{2} + beta$, folgt einer universellen $textit{T }^{2}$-Abh"{a}ngigkeit in allen magnetischen Feldern. In der N"{a}he des Nullwiderstand-Zustandes h"{a}ngt der spezifische Hall-Widerstand $rho_{yx}$ "{u}ber ein Potenzgesetz mit dem longitudinalen Widerstand $rho_{xx}$ zusammen. Das Skalenverhalten zwischen $rho_{yx}$ und $rho_{xx}$ weist eine starke Feld-Abh"{a}ngigkeit auf. Der Skalenexponent $beta$ in der Gleichung $rho_{yx}$ =A $rho_{xx}^{beta}$ steigt von 1.0 bis 1.7, w"{a}hrend das Feld von 1.0 bis 12 T zunimmt.
Resumo:
Primitive kohlige Chondrite sind Meteorite, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden und dadurch einen Einblick in Prozesse geben, die zur Bildung und Veränderung der ersten festen Materie führten. Solche Prozesse können anhand von Bruchstücken dieser Meteorite detailliert im Labor studiert werden, sodass Rückschlüsse auf die Entwicklung unseres Sonnensystems im frühen Stadium getroffen werden können. Ca-, Al-reiche Einschlüsse (CAIs) aus chondritischen Meteoriten sind die ersten Festkörper des Sonnensystems und enthalten viele refraktäre Metallnuggets (RMNs), welche hauptsächlich aus den Elementen Os, Ir, Ru, Mo und Pt bestehen. Nach weit verbreiteter Ansicht sind diese Nuggets wahrscheinlich im Gleichgewicht mit dem solaren Nebel kondensiert, bereits früher oder gleichzeitig mit Oxiden und Silikaten. Die exakten Mechanismen, die zu ihren heute beobachteten Eigenschaften führten, sind allerdings unklar. Um frühere Arbeiten fortzuführen, wurde eine hohe Anzahl RMNs in vier unterschiedlichen Typen von Meteoriten detailliert studiert, darunter solche aus dem nahezu unveränderten Acfer 094, Allende (CV3ox), Leoville (CV3red) und Murchison (CM2). Die RMNs wurden in-situ, assoziiert mit ihren Wirtsmineralen und auch in Säurerückständen gefunden, deren Präparationsprozedur in dieser Arbeit speziell für RMNs durch eine zusätzliche Dichtetrennung verbessert wurde.rnDie Ergebnisse decken eine Reihe von Ungereimtheiten zwischen den beobachteten RMN-Eigenschaften und einer Kondensationsherkunft auf, sowohl für Kondensation in solarer Umgebung, als auch für Kondensation aus Material von Supernovae oder roten Riesen, für die die Kondensationssequenzen refraktärer Metalle speziell für diesen Vergleich berechnet wurden. Stattdessen wurden in dieser Arbeit neue Einblicke in die RMN-Entstehung und die Entwicklung der ersten Festkörper (CAIs) durch eine Kombination aus experimentellen, isotopischen, strukturellen und petrologischen Studien an RMNs gewonnen. Viele der beobachteten Eigenschaften sind mit Ausfällung der RMN aus einer CAI-Schmelze vereinbar. Ein solches Szenario wird durch entsprechende Untersuchungen an synthetisch hergestellten, mit refraktären Metallen im Gleichgewicht stehenden CAI-Schmelzen bestätigt. Es folgt aus den Ergebnissen, dass die Mehrzahl der RMNs isotopisch solar ist und alle untersuchten RMNs innerhalb von CAIs bei rascher Abkühlung (um bis zu 1000 °C/40 sek.) einer CAI-Schmelze gebildet wurden. rn