3 resultados para Defective and delinquent classes

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In diesem Arbeitspapier will ich zur künftigen Forschung über soziale Stratifikation in Afrika beitragen, indem ich die theoretischen Implikationen und empirischen Herausforderungen der Konzepte "Elite" und "Mittelklasse" untersuche. Diese Konzepte stammen aus teilweise miteinander konkurrierenden Theorietraditionen. Außerdem haben Sozialwissenschaftler und Historiker sie zu verschiedenen Zeiten und mit Bezug auf verschiedene Regionen unterschiedlich verwendet. So haben Afrikaforscher und -forscherinnen soziale Formationen, die in anderen Teilen der Welt als Mittelklasse kategorisiert wurden, meist als Eliten aufgefasst und tun dies zum Teil noch heute. Elite und Mittelklasse sind aber nicht nur Begriffe der sozialwissenschaftlichen Forschung, sondern zugleich Kategorien der sozialen und politischen Praxis. Die Art und Weise, wie Menschen diese Begriffe benutzen, um sich selbst oder andere zu beschreiben, hat wiederum Rückwirkungen auf sozialwissenschaftliche Diskurse und umgekehrt. Das Arbeitspapier setzt sich mit beiden Aspekten auseinander: mit der Geschichte der theoretischen Debatten über Elite und Mittelklasse und damit, was wir aus empirischen Studien über die umstrittenen Selbstverortungen sozialer Akteure lernen können und über ihre sich verändernden Auffassungen und Praktiken von Elite- oder Mittelklasse-Sein. Weil ich überzeugt bin, dass künftige Forschung zu sozialer Stratifikation in Afrika außerordentlich viel von einer historisch und regional vergleichenden Perspektive profitieren kann, analysiert dieses Arbeitspapier nicht nur Untersuchungen zu afrikanischen Eliten und Mittelklassen, sondern auch eine Fülle von Studien zur Geschichte der Mittelklassen in Europa und Nordamerika sowie zu den neuen Mittelklassen im Globalen Süden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A viral vector system was developed based on a DI-RNA, a sub-viral particle derived from TBSV-BS3-statice. This newly designed vector system was tested for its applicability in protein expression and induction of gene silencing. Two strategies were pursued. The first strategy was replication of the DI-RNA by a transgenically expressed TBSV replicase and the second was the replication by a so called helper virus. It could be demonstrated by northern blot analysis that the replicase, expressed by the transgenic N. benthamiana plant line TR4 or supplied by the helper virus, is able to replicate DI-RNA introduced into the plant cells. Various genes were inserted into different DI constructs in order to study the vector system with regard to protein expression. However, independent of how the replicase was provided no detectable amounts of protein were produced in the plants. Possible reasons for this failure are identified: the lack of systemic movement of the DI-RNA in the transgenic TR4 plants and the occurrence of deletions in the inserted genes in both systems. As a consequence the two strategies were considered unsuitable for protein expression. The DI-RNA vector system was able to induce silencing of transgenes as well as endogenous genes. Several different p19 deficient helper virus constructs were made to evaluate their silencing efficiency in combination with our DI-RNA constructs. However, it was found that our vector system can not compete with other existing VIGS (virus induced gene silencing) systems in this field. Finally, the influence of DI sequences on mRNA stability on transient GUS expression experiments in GUS silenced plants was evaluated. The GUS reporter gene system was found to be unsuitable for distinguishing between expression levels of wild type plants and GUS silenced transgenic plants. The results indicate a positive effect of the DI sequences on the level of protein expression and therefore further research into this area is recommended.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.