5 resultados para DNA Methylierung Epigenetik AHCY Methionin
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die S-adenosyl-L-Homocysteinhydrolase (AHCY)-Defizienz ist eine seltene autosomal rezessive Erbkrankheit, bei der Mutationen im AHCY-Gen die Funktionsfähigkeit des kodierten Enzyms beeinträchtigen. Diese Krankheit führt zu Symptomen wie Entwicklungsverzögerungen, mentaler Retardierung und Myopathie. In der vorliegenden Arbeit wurde der Einfluss der AHCY-Defizienz auf die Methylierung der DNA in Blutproben und Fibroblasten von Patienten mit AHCY-Defizienz, sowie in HEK293- und HepG2-Zelllinien mit AHCY-Knockdown untersucht. Der gesamtgenomische Methylierungsstatus wurde mit Hilfe des MethylFlash ™ Methylated DNA Quantification Kit (Epigentek) bei drei Patienten-Blutproben festgestellt. In den Blutproben von sieben Patienten und Fibroblasten von einem Patienten wurde die Methylierung von DMRs sieben geprägter Gene (GTL2, H19, LIT1, MEST, NESPAS, PEG3, SNRPN) und zwei repetitiver Elemente (Alu, LINE1) mittels Bisulfit-Pyrosequenzierung quantifiziert und durch High Resolution Melting-Analyse bestätigt. Zusätzlich wurde eine genomweite Methylierungsanalyse mit dem Infinium® HumanMethylation450 BeadChip (Illumina) für vier Patientenproben durchgeführt und die Expression von AHCY in Fibroblasten mittels Expressions-qPCR und QUASEP-Analyse untersucht. Die Methylierungsanalysen ergaben eine Hypermethylierung der gesamtgenomischen DNA und stochastische Hypermethylierungen von DMRs geprägter Gene bei einigen Patienten. Die HEK293- und HepG2-Zelllinien wiesen dagegen hauptsächlich stochastische Hypomethylierungen an einigen DMRs geprägter Gene und LINE1-Elementen auf. Die genomweite Methylierungsarray-Analyse konnte die Ergebnisse der Bisulfit-Pyrosequenzierung nicht bestätigen. Die Expressionsanalysen der AHCY-defizienten Fibroblasten zeigten eine verminderte Expression von AHCY, wobei beide Allele etwa gleich stark transkribiert wurden. Die Ergebnisse deuten darauf hin, dass die AHCY-Defizienz eine gute Modellerkrankung für die Untersuchung biologischer Konsequenzen von Methylierungsstörungen im Rahmen der Epigenetik-Forschung sein könnte. Sie ist unseres Wissens die erste monogene Erkrankung mit symptomaler DNA-Hypermethylierung beim Menschen.
Resumo:
Drosophila melanogaster enthält eine geringe Menge an 5-methyl-Cytosin. Die von mir untersuchte männliche Keimbahn von Drosophila weist jedoch keine nachweisbaren Mengen an DNA-Methylierung auf. Eine künstliche Expression der murinen de novo Methyltransferasen, DNMT3A und DNMT3B1, in den Fliegenhoden, führte nicht zu der erwarteten Methylierungszunahme und hatte keinen Effekt auf die Fruchtbarkeit der Männchen. Auch die gewebespezifische Expression unter der Verwendung des UAS/GAL4-Systems zeigte keine phenotypischen Veränderungen. Hingegen fanden wir auf Protein-Ebene des Chromatins von D. melanogaster und D. hydei spezifische Modifikationsmuster der Histone H3 und H4 in der Keimbahn, wie auch in den somatischen Zellen des Hodenschlauches. Die Modifikationsmuster der beiden Zelltypen unterscheiden sich grundlegend und weichen zudem von dem für Eu- und Heterochromatin erwarteten ab, was auf eine größere Komplexität des „Histon-Codes“ als angenommen hindeutet. Folglich liegt die epigenetische Information in Drosophila wahrscheinlich anstatt auf DNA- auf Protein-Ebene, wodurch Genexpression über die Chromatinstruktur reguliert wird. Es wurde gezeigt, dass der Transkriptionsfaktor E2F, der eine Schlüsselfunktion im Zellzyklus hat, durch unterschiedliche Transkripte offenbar quantitativ reguliert wird. Unsere Nachforschungen ergaben, dass die drei E2F1 Genprodukte in Drosophila neben ihrer Zellspezifität auch in unterschiedlichen Expressionsniveaus auftreten, was die Annahme einer quantitativen Expression unterstützt. Die verschiedenen Funktionen der multiplen Gene in Säugern, könnten so funktionell kompensiert werden. Die durch die Expression dreier dE2F1-Transkripte vermutete Synthese verschiedener Proteine konnte nicht bewiesen werden.
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
Seit der Geburt von Louise J. Brown (1978) als erstem künstlich erzeugtem Kind hat sich die Nachfrage nach assistierten Reproduktionstechniken (ART) stark erhöht. Der Anteil der nach In-vitro-Fertilisation (IVF) oder Intrazytoplasmatischer Spermieninjektion (ICSI) geborenen Kinder macht mittlerweile abhängig vom betrachteten Industrieland zwischen 1-4% an der Gesamtgeburtenzahl aus. In zahlreichen Studien korreliert eine erhöhte Prävalenz für seltene Imprinting-Erkrankungen, wie z.B. Beckwith-Wiedemann oder Angelman-Syndrom, mit der Geburt nach assistierten Reproduktionstechniken. Es ist bekannt, dass die medizinischen Interventionen zur Behandlung von Sub- und Infertilität in sehr sensitive Phasen der epigenetischen Reprogrammierung des Embryos und der Keimzellen eingreifen. In der vorliegenden Arbeit wurde untersucht, ob die ovarielle Stimulation einen Einfluss auf die epigenetische Integrität von geprägten Genen in murinen Präimplantationsembryonen hat. Die in diesem Zusammenhang entwickelte digitale Bisulfitpyrosequenzierung gewährleistet die Analyse der DNA-Methylierung auf Einzelallelebene durch eine adäquate Verdünnung der Probe im Vorfeld der PCR. Die ovarielle Induktion führte zu einem erhöhten Rate an Epimutationen des paternalen H19-Allels, sowie des maternalen Snrpn-Allels. Zudem konnte festgestellt werden, dass die Expression von drei potentiellen Reprogrammierungsgenen (Apex1, Polb, Mbd3) in Embryonen aus hormonell stimulierten Muttertieren dereguliert ist. Whole-Mount Immunfluoreszenzfärbungen für APEX1 korrelierten dessen differentielle Genexpression mit dem Proteinlevel. Anzeichen früher apoptotischer Vorgänge äußerten sich in Embryonen aus hormonell induzierten Muttertieren in der hohen Rate an Embryonen, die keines der drei Transkripte exprimierten oder weniger APEX1-positive Blastomeren aufwiesen.In einer weiteren Fragestellung wurde untersucht, ob die Kryokonservierung muriner Spermatozoen den epigenetischen Status geprägter Gene in den Keimzellen beeinflusst. Die Analyse von F1-Zweizellembryonen, die durch IVF mit den jeweiligen Spermatozoen eines Männchens generiert wurden, diente der Aufklärung möglicher paternaler Transmissionen. Insgesamt konnten keine signifikanten Auswirkungen der Kryokonservierung auf den epigenetischen Status in Spermatozoen und F1-Embryonen ermittelt werden.
Resumo:
Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The aim of my study was to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy926 cells with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, the present study provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition. In addition, HDAC inhibition-induced Nox4 downregulation may also involves microRNA-mediated mRNA destabilization, because the effect of the scriptaid could be partially blocked by DICER1 knockdown or by transcription inhibition.