1 resultado para Crystal engineering
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The present work deals with the characterisation of three columnar self-assembled systems, that is, benzene-1,3,5-tricarboxamides, a peripherally thioalkyl-substituted phthalocyanine, and several oligo-(p-phenylenevinylene)s. In order to probe the supramolecular organisation solid-state NMR has been used as the main technique, supported by X-ray measurements, theoretical methods, and thermal analysis. rnrnBenzene-1,3,5-tricarboxamides (BTAs) turned out to be well suited model compounds to study various fundamental supramolecular interactions, such as π-π-interactions, hydrogen bonding, as well as dynamic and steric effects of attached side chains. Six BTAs have been investigated in total, five with a CO-centred amide group bearing different side chains and one with an inverted N-centred amide group. The physical properties of these BTAs have been investigated as a function of temperature. The results indicated that in case of the CO-centred BTAs the stability of the columnar mesophase depends strongly on the nature of the side chains. Further experiments revealed a coplanar orientation of adjacent BTA molecules in the columnar assembly of CO-centred BTAs, whereas the N-centred BTA, showed a deviating not fully coplanar arrangement. These differences were ascribed to distinct hydrogen bonding schemes, involving a parallel alignment of hydrogen bonds in case of CO-centred BTAs and an antiparallel alignment in case of the N-centred counterpart.rnrn The fundamental insights of the supramolecular organisation of BTAs could be partially adapted to an octa-substituted phthalocyanine with thiododecyl moieties. Solid-state NMR in combination with chemical shift calculations determined a tilted herringbone arrangement of phthalocyanine rings in the crystalline phase as well as in the mesophase. Moreover, 1H NMR measurements in the mesophase of this compound suggested an axial rotation of molecules, which is inhibited in the crystalline phase.rnrnAs a third task, the supramolecular assembly of oligo-(p-phenylenevinylene)s of varying length and with different polar head groups have been investigated by a combined X-ray and solid-state NMR study. The results revealed a columnar structure formation of these compounds, being promoted by phase separation of alkyl side chains and aromatic rigid rods. In this system solid-state NMR yielded meaningful insight into the isotropisation process of butoxy and 2-S-methylbutoxy substituted oligo-(p-phenylenevinylene) rods.rn