3 resultados para Cox Proportional Hazards Model
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.
Resumo:
In dieser Arbeit geht es um die Schätzung von Parametern in zeitdiskreten ergodischen Markov-Prozessen im allgemeinen und im CIR-Modell im besonderen. Beim CIR-Modell handelt es sich um eine stochastische Differentialgleichung, die von Cox, Ingersoll und Ross (1985) zur Beschreibung der Dynamik von Zinsraten vorgeschlagen wurde. Problemstellung ist die Schätzung der Parameter des Drift- und des Diffusionskoeffizienten aufgrund von äquidistanten diskreten Beobachtungen des CIR-Prozesses. Nach einer kurzen Einführung in das CIR-Modell verwenden wir die insbesondere von Bibby und Sørensen untersuchte Methode der Martingal-Schätzfunktionen und -Schätzgleichungen, um das Problem der Parameterschätzung in ergodischen Markov-Prozessen zunächst ganz allgemein zu untersuchen. Im Anschluss an Untersuchungen von Sørensen (1999) werden hinreichende Bedingungen (im Sinne von Regularitätsvoraussetzungen an die Schätzfunktion) für die Existenz, starke Konsistenz und asymptotische Normalität von Lösungen einer Martingal-Schätzgleichung angegeben. Angewandt auf den Spezialfall der Likelihood-Schätzung stellen diese Bedingungen zugleich lokal-asymptotische Normalität des Modells sicher. Ferner wird ein einfaches Kriterium für Godambe-Heyde-Optimalität von Schätzfunktionen angegeben und skizziert, wie dies in wichtigen Spezialfällen zur expliziten Konstruktion optimaler Schätzfunktionen verwendet werden kann. Die allgemeinen Resultate werden anschließend auf das diskretisierte CIR-Modell angewendet. Wir analysieren einige von Overbeck und Rydén (1997) vorgeschlagene Schätzer für den Drift- und den Diffusionskoeffizienten, welche als Lösungen quadratischer Martingal-Schätzfunktionen definiert sind, und berechnen das optimale Element in dieser Klasse. Abschließend verallgemeinern wir Ergebnisse von Overbeck und Rydén (1997), indem wir die Existenz einer stark konsistenten und asymptotisch normalen Lösung der Likelihood-Gleichung zeigen und lokal-asymptotische Normalität für das CIR-Modell ohne Einschränkungen an den Parameterraum beweisen.
Resumo:
A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.