7 resultados para Continuous domains
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
Analyses of low density lipoprotein receptor-related protein 1 (LRP1) mutant mouse embryonic fibroblasts (MEFs) generated from LRP1 knock-in mice revealed that inefficient maturation and premature proteasomal degradation of immature LRP1 is causing early embryonic lethality in NPxY1 and NPxY1+2 mutant mice. In MEFs, NPxY2 mutant LRP1 showed efficient maturation but, as expected, decreased endocytosis. The single proximal NPxY1 and the double mutant NPxY1+2 were unable to reach the cell surface as an endocytic receptor due to premature degradation. In conclusion, the proximal NPxY1 motif is essential for early sorting steps in the biosynthesis of mature LRP1.rnThe viable NPxY2 mouse was used to provide genetic evidence for LRP1-mediated amyloid-β (Aβ) transport across the blood-brain barrier (BBB). Here, we show that primary mouse brain capillary endothelial cells (pMBCECs) express functionally active LRP1. Moreover, demonstrate that LRP1 mediates [125I]-Aβ1-40 transcytosis across pMBCECs in both directions, whereas no role for LRP1-mediated Aβ degradation was detected. Aβ transport across pMBCECs generated from NPxY2 knock-in mice revealed a reduced Aβ clearance in both directions compared to WT derived pMBCECs. Finally, we conclude that LRP1 is a bona-fide receptor involved in bidirectional transcytosis of Aβ across the BBB.rn
Resumo:
A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
Die Zielsetzung der Arbeit besteht darin, neue Ansätze zur Herstellung strukturierter Kompositpartikel in wässrigem Medium zu entwickeln, welche als die Bildung genau definierter heterogener Strukturen in Kolloidsystemen angesehen werden können. Im Allgemeinen wurden zwei verschiedene Herangehensweisen entwickelt, die sich aufgrund des Ursprungs der gebildeten heterogenen Strukturen unterscheiden: Heterogenität oder Homogenität. Der Erste Ansatz basiert auf der Aggregation heterogener Phasen zur Bildung strukturierter Kolloidpartikel mit Heterogenität in der zugrunde liegenden Chemie, während der Zweite Ansatz auf der Bildung heterogener Phasen in Kolloidpartikeln aus homogenen Mischungen heraus durch kontrollierte Phasenseparation beruht.rnIm Detail beschäftigt sich der erste Teil der Dissertation mit einer neuen Herstellungsmethode für teilkristalline Komposit-Kolloidpartikel mit hoher Stabilität basierend auf der Aggregation flüssiger Monomertropfen an teilkristalline Polyacrylnitrilpartikel. Nach der Aggregation wurden hochstabile Dispersionen bestehend aus strukturierten, teilkristallinen Kompositpartikeln durch freie radikalische Polymerisation erhalten, während ein direktes Mischen der PAN Dispersionen mit Methacrylat-Polymerdispersionen zur unmittelbaren Koagulation führte. In Abhängigkeit von der Glastemperatur des Methacrylatpolymers führt die anschließende freie radikalische Polymerisation zur Bildung von Rasberry oder Kern-Schale Partikeln. Die auf diese Weise hergestellten Partikel sind dazu in der Lage, kontinuierliche Filme mit eingebetteten teilkristallinen Phasen zu bilden, welche als Sauerstoffbarriere Anwendung finden können.rnDer zweite Teil der Dissertation beschreibt eine neue Methode zur Herstellung strukturierter Duroplast-Thermoplast Komposit-Kolloidpartikel. Die Bildung eines Duroplastnetzwerks mit einer thermoplastischen Hülle wurde in zwei Schritten durch verschiedene, separate Polymerisationsmechanismen erreicht: Polyaddition und freie radikalische Polymerisation. Es wurden stabile Miniemulsionen erhalten, welche aus Bisphenol-F basiertem Epoxidharz, Phenalkamin-basiertem Härter und Vinlymonomere bestehen. Sie wurden durch Ultraschall mit nachfolgender Härtung bei verschiedenen Temperaturen als sogenannte Seed-Emulsionen hergestellt. Weitere Vinylmonomere wurden hinzugegeben und nachfolgend polymerisiert, was zur Bildung von Kern-Schale, beziehungsweise Duroplast-Thermoplast Kolloidpartikeln führte. Dabei findet in beiden Fällen zwischen der duroplastischen und der thermoplastischen Phase eine chemisch induzierte Phasenseparation statt, welche essenziell für die Bildung heterogener Strukturen ist. Die auf diese Weise hergestellten Kompositpartikel sind dazu in der Lage, transparente Filme zu bilden, welche unter geeigneten Bedingungen deutlich verbesserte mechanische Eigenschaften im Vergleich zu reinen Duroplastfilmen bereitstellen.rn
Resumo:
The thesis can be divided in four parts and summarized as follows:(i) The investigation and development of a continuous flow synthesis procedure affording end-functional polymers by anionic polymerization and subsequent termination in one reaction step and on a multigram scale was carried out. Furthermore, the implementation of not only a single hydroxyl but multiple orthogonal functionalities at the chain terminus was achieved by utilizing individually designed, functional epoxide-based end-capping reagents.(ii) In an additional step, the respective polymers were used as macroinitiators to prepare in-chain functionalized block copolymers and star polymers bearing intriguing novel structural and material properties. Thus, the second part of this thesis presents the utilization of end-functional polymers as precursors for the synthesis of amphiphilic complex and in some cases unprecedented macromolecular architectures, such as miktoarm star polymers based on poly(vinyl pyridine), poly(vinyl ferrocene) and PEO.(iii) Based on these structures, the third part of this thesis represents a detailed investigation of the preparation of stimuli-responsive ultrathin polymer films, using amphiphilic junction point-reactive block copolymers. The single functionality at the block interface can be employed as anchor group for the covalent attachment on surfaces. Furthermore, the change of surface properties was studied by applying different external stimuli.(iv) An additional topic related to the oxyanionic polymerizations carried out in the context of this thesis was the investigation of viscoelastic properties of different hyperbranched polyethers, inspired by the recent and intense research activities in the field of biomedical applications of multi-functional hyperbranched materials.