2 resultados para Content Analysis and Indexing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the car sequencing (CS) problem, a combinatorial optimization problem for sequencing mixed-model assembly lines. The aim is to find a production sequence for different variants of a common base product, such that work overload of the respective line operators is avoided or minimized. The variants are distinguished by certain options (e.g., sun roof yes/no) and, therefore, require different processing times at the stations of the line. CS introduces a so-called sequencing rule H:N for each option, which restricts the occurrence of this option to at most H in any N consecutive variants. It seeks for a sequence that leads to no or a minimum number of sequencing rule violations. In this work, CS’ suitability for workload-oriented sequencing is analyzed. Therefore, its solution quality is compared in experiments to the related mixed-model sequencing problem. A new sequencing rule generation approach as well as a new lower bound for the problem are presented. Different exact and heuristic solution methods for CS are developed and their efficiency is shown in experiments. Furthermore, CS is adjusted and applied to a resequencing problem with pull-off tables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.