3 resultados para Conduction mechanism

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Es wird ein neues Konzept für ein protonenleitendes Polymer vorgestellt, das ohne eine zweite, flüssige Phase auskommt. Es beruht darauf, basische Gruppen (Imidazol) über flexible Spacer kovalent an ein Polymerrückgrat zu binden und durch Dotierung mit einer geringen Menge Säure Ladungsträger (Protonen) in dieses System einzubringen.Um die für die Leitfähigkeit und ihren Mechanismus verantwortlichen Größen zu identifizieren, wurde ein Satz von niedermolekularen Modellverbindungen definierter Struktur und hoher Reinheit synthetisiert und im reinen Zustand sowie nach Dotierung mit geringen Mengen Säure umfassend charakterisiert. Untersucht wurden die thermischen Eigenschaften, die Leitfähigkeit, die Diffusion der jeweiligen Modellverbindung sowie ggf. der zugesetzten Säure, das Protonierungsgleichgewicht und die dielektrischen Eigenschaften. Insbesondere wurden durch den Vergleich von Leitfähigkeits- und Diffusionsdaten unter Anwendung der Nernst-Einstein-Beziehung Rückschlüsse auf den Leitmechanismus gezogen.Es wurden Leitfähigkeiten von bis zu 6.5E-3 S/cm bei 120°C erreicht. Der Anteil der Strukturdiffusion (vergleichbar mit dem Grotthus-Mechanismus in Wasser) an der protonischen Leitfähigkeit betrug bis zu über 90%. Als entscheidende Faktoren für die Leitfähigkeit wurden die Glastemperatur und, mit geringerer Priorität, der Imidazolgehalt des Materials identifiziert. Die Temperaturabhängigkeit aller untersuchten Transportgrößen ließ sich durch die Vogel-Tamman-Fulcher-Gleichung exzellent beschreiben.Die vorgestellten Daten bilden die Grundlage für den Entwurf eines entsprechenden Polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Es werden neuartige, polymere Protonenleiter vorgestellt die nach dem 'Konzept des polymergebunden Protonensolvens' realisiert wurden. Sie zeigen protonische Leitfähigkeit als intrinsische Eigenschaft, sodass keine zweite, flüssige Phase zur Protonenleitung nötig ist. Verwirklicht wurde das Konzept anhand von kammartigen Siloxanoligomeren und -polymeren, wobei Imidazol als Protonensolvens durch flexible Spacer kovalent an das Rückgrat gebunden ist. Durch Pfropfung mit imidazoltragenden Spacereinheiten wurden ferner Kieselgelnanopartikel oberflächenmodifiziert. Um die Auswirkungen der Immobilisierung von Imidazol auf die Leitfähigkeit zu untersuchen, wurden neben unterschiedlichen Molekulargewichten, die Verbindungen auch jeweils mit verschiedenen Spacerlängen synthetisiert. Die Materialien wurden umfassend charakterisiert und auf ihr thermisches Verhalten, Stabilität, Leitfähigkeit, Diffusion und dielektrisches Verhalten sowie auch nach Dotierung mit Säure untersucht. Thermisch stabil sind die Materialien bis ca. 200°C. Die Leitfähigkeiten betragen bis zu 1,5E-3 S/cm bei 160°C, welche aufgrund der Immobilisierung des Imidazols ausschließlich auf Strukturdiffusion zurückzuführen sind. Die Strukturdiffusion ist vergleichbar mit dem Grotthus-Mechanismus in Wasser und wird durch die lokale Mobilität der Imidazolmoleküle, d.h. durch die Glasübergangstemperatur des Systems bestimmt. Entsprechend wird das für Glasbildner typische Vogel-Tamman-Fulcher-Verhalten für alle untersuchten Transportprozesse gefunden. Die mit abnehmender Glasübergangstemperatur abnehmende mechanische Stabilität der Materialien kann, wie gezeigt ist, durch Compoundierung mit Kieselgelnanopartikeln entscheidend verbessert werden, was eine kostengünstige und aussichtsreiche Möglichkeit zur Herstellung von Membranen für Brennstoffzellen darstellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.