12 resultados para Characterization techniques

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the design and characterization of a novel, artificial minimal model membrane system with chosen physical parameters to mimic a nanoparticle uptake process driven exclusively by adhesion and softness of the bilayer. The realization is based on polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMDS-b-PMOXA) and nanoscopic colloidal particles (polystyrene, silica), and the utilization of powerful characterization techniques. rnPDMS-b-PMOXA polymersomes with a radius, Rh ~100 nm, a size polydispersity, PD = 1.1 and a membrane thickness, h = 16 nm, were prepared using the film rehydratation method. Due to the suitable mechanical properties (Young’s modulus of ~17 MPa and a bending modulus of ~7⋅10-8 J) along with the long-term stability and the modifiability, these kind of polymersomes can be used as model membranes to study physical and physicochemical aspects of transmembrane transport of nanoparticles. A combination of photon (PCS) and fluorescence (FCS) correlation spectroscopies optimizes species selectivity, necessary for a unique internalization study encompassing two main efforts. rnFor the proof of concepts, the first effort focused on the interaction of nanoparticles (Rh NP SiO2 = 14 nm, Rh NP PS = 16 nm; cNP = 0.1 gL-1) and polymersomes (Rh P = 112 nm; cP = 0.045 gL-1) with fixed size and concentration. Identification of a modified form factor of the polymersome entities, selectively seen in the PCS experiment, enabled a precise monitor and quantitative description of the incorporation process. Combining PCS and FCS led to the estimation of the incorporated particles per polymersome (about 8 in the examined system) and the development of an appropriate methodology for the kinetics and dynamics of the internalization process. rnThe second effort aimed at the establishment of the necessary phenomenology to facilitate comparison with theories. The size and concentration of the nanoparticles were chosen as the most important system variables (Rh NP = 14 - 57 nm; cNP = 0.05 - 0.2 gL-1). It was revealed that the incorporation process could be controlled to a significant extent by changing the nanoparticles size and concentration. Average number of 7 up to 11 NPs with Rh NP = 14 nm and 3 up to 6 NPs with Rh NP = 25 nm can be internalized into the present polymersomes by changing initial nanoparticles concentration in the range 0.1- 0.2 gL-1. Rapid internalization of the particles by polymersomes is observed only above a critical threshold particles concentration, dependent on the nanoparticle size. rnWith regard possible pathways for the particle uptake, cryogenic transmission electron microscopy (cryo-TEM) has revealed two different incorporation mechanisms depending on the size of the involved nanoparticles: cooperative incorporation of nanoparticles groups or single nanoparticles incorporation. Conditions for nanoparticle uptake and controlled filling of polymersomes were presented. rnIn the framework of this thesis, the experimental observation of transmembrane transport of spherical PS and SiO2 NPs into polymersomes via an internalization process was reported and examined quantitatively for the first time. rnIn a summary the work performed in frames of this thesis might have significant impact on cell model systems’ development and thus improved understanding of transmembrane transport processes. The present experimental findings help create the missing phenomenology necessary for a detailed understanding of a phenomenon with great relevance in transmembrane transport. The fact that transmembrane transport of nanoparticles can be performed by artificial model system without any additional stimuli has a fundamental impact on the understanding, not only of the nanoparticle invagination process but also of the interaction of nanoparticles with biological as well as polymeric membranes. rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit 'Liquid Crystalline Hexabenzocoronenes as Organic Molecular Materials - Synthesis, Characterization and Application' war durch drei Schwerpunkte definiert:1. Verbesserung der Synthese von Hexabenzocoronen Derivaten mit sechsfacher Alkyl-Substitution,2. Entwicklung von molekularen Materialien mit verbesserten Eigenschaften wie zum Beispiel Löslichkeit und Verarbeitbarkeit,3. Einsatz der entwickelten Moleküle in optoelektronischen Bauteilen wie zum Beispiel organischen Solarzellen und Feld-Effekt-Transistoren.Mit Hilfe einer neuen Syntheseroute ist es gelungen Aryl-Aryl und Aryl-Alkyl Kupplungen sehr spät in der Reaktionssequenz von Hexabenzocoronenen einzusetzen. Dies führte zu einer Vielzahl substituierter HBC Derivate. Die Einführung eines Phenyl Spacers zwischen den HBC Kern und die äußeren Alkylketten, wie zum Beispiel in HBC-PhC12, hatte eine Vielzahl positiver Effekte wie dramatisch verbesserte Löslichkeit und Flüssigkristallinität bei Raumtemperatur zur Folge. Die Kombination dieser Phänomene ermöglichte die Bildung hochgeordneter Filme, welche sehr wichtig für den Einsatz in organischen Bauelementen sind. Mit Hilfe von STM Techniken an der Fest-Flüssig Phasengrenze wurden hochgeordnete 2-D Strukturen der HBC Moleküle gefunden. Die Kombination von extrem hoher kolumnarer Ordnung, bestimmt mit Hilfe der Festkörper NMR Spektroskopie, mit einer konstant hohen Ladungsträgerbeweglichkeit, führte zu dem sehr erfolgreichen Einsatz von HBC-PhC12 in organischen Solarzellen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research has included the efforts in designing, assembling and structurally and functionally characterizing supramolecular biofunctional architectures for optical biosensing applications. In the first part of the study, a class of interfaces based on the biotin-NeutrAvidin binding matrix for the quantitative control of enzyme surface coverage and activity was developed. Genetically modified ß-lactamase was chosen as a model enzyme and attached to five different types of NeutrAvidin-functionalized chip surfaces through a biotinylated spacer. All matrices are suitable for achieving a controlled enzyme surface density. Data obtained by SPR are in excellent agreement with those derived from optical waveguide measurements. Among the various protein-binding strategies investigated in this study, it was found that stiffness and order between alkanethiol-based SAMs and PEGylated surfaces are very important. Matrix D based on a Nb2O5 coating showed a satisfactory regeneration possibility. The surface-immobilized enzymes were found to be stable and sufficiently active enough for a catalytic activity assay. Many factors, such as the steric crowding effect of surface-attached enzymes, the electrostatic interaction between the negatively charged substrate (Nitrocefin) and the polycationic PLL-g-PEG/PEG-Biotin polymer, mass transport effect, and enzyme orientation, are shown to influence the kinetic parameters of catalytic analysis. Furthermore, a home-built Surface Plasmon Resonance Spectrometer of SPR and a commercial miniature Fiber Optic Absorbance Spectrometer (FOAS), served as a combination set-up for affinity and catalytic biosensor, respectively. The parallel measurements offer the opportunity of on-line activity detection of surface attached enzymes. The immobilized enzyme does not have to be in contact with the catalytic biosensor. The SPR chip can easily be cleaned and used for recycling. Additionally, with regard to the application of FOAS, the integrated SPR technique allows for the quantitative control of the surface density of the enzyme, which is highly relevant for the enzymatic activity. Finally, the miniaturized portable FOAS devices can easily be combined as an add-on device with many other in situ interfacial detection techniques, such as optical waveguide lightmode spectroscopy (OWLS), the quartz crystal microbalance (QCM) measurements, or impedance spectroscopy (IS). Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) allows for an absolute determination of intrinsic rate constants describing the true parameters that control interfacial hybridization. Thus it also allows for a study of the difference of the surface coupling influences between OMCVD gold particles and planar metal films presented in the second part. The multilayer growth process was found to proceed similarly to the way it occurs on planar metal substrates. In contrast to planar bulk metal surfaces, metal colloids exhibit a narrow UV-vis absorption band. This absorption band is observed if the incident photon frequency is resonant with the collective oscillation of the conduction electrons and is known as the localized surface plasmon resonance (LSPR). LSPR excitation results in extremely large molar extinction coefficients, which are due to a combination of both absorption and scattering. When considering metal-enhanced fluorescence we expect the absorption to cause quenching and the scattering to cause enhancement. Our further study will focus on the developing of a detection platform with larger gold particles, which will display a dominant scattering component and enhance the fluorescence signal. Furthermore, the results of sequence-specific detection of DNA hybridization based on OMCVD gold particles provide an excellent application potential for this kind of cheap, simple, and mild preparation protocol applied in this gold fabrication method. In the final chapter, SPFS was used for the in-depth characterizations of the conformational changes of commercial carboxymethyl dextran (CMD) substrate induced by pH and ionic strength variations were studied using surface plasmon resonance spectroscopy. The pH response of CMD is due to the changes in the electrostatics of the system between its protonated and deprotonated forms, while the ionic strength response is attributed from the charge screening effect of the cations that shield the charge of the carboxyl groups and prevent an efficient electrostatic repulsion. Additional studies were performed using SPFS with the aim of fluorophore labeling the carboxymethyl groups. CMD matrices showed typical pH and ionic strength responses, such as high pH and low ionic strength swelling. Furthermore, the effects of the surface charge and the crosslink density of the CMD matrix on the extent of stimuli responses were investigated. The swelling/collapse ratio decreased with decreasing surface concentration of the carboxyl groups and increasing crosslink density. The study of the CMD responses to external and internal variables will provide valuable background information for practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study of sponge-bacterial association, the presence of a marine bacterium which has not seen to be associated previously with the Mediterranean sponge Suberites domuncula was investigated. The marine sponge S. domuncula was chosen as the subject of investigation, for the identification of potential symbiotic microorganisms, since it can be kept under controlled laboratory conditions for over five years. By the use of specialized media assisting in the growth of a metal oxidizing bacterium, the manganese oxidizing bacterium was isolated from the surface of the marine sponge. The bacterium so isolated was characterized for its growth characteristics by microbiological and biochemical techniques, a detailed analysis of which showed that the bacterium followed a life cycle where the culture showed the presence of spore forming bacteria. This was correlated to the manganese oxidation activity of the bacteria and it was found that both stages are interdependent.The action of the protein responsible for carrying out the manganese (Mn) oxidation was studied by an in-gel oxidation assay, and the presence of a multi copper oxidase was confirmed by the use of copper chelators in the buffer. In parallel the effect of addition of copper was observed on the manganese oxidation by the bacteria thus supporting the observations. The manganese oxidation reaction by the bacteria was determined in the culture medium and on the surface of the cells, and it could be concluded that the oxidation was facilitated by the presence of the polysaccharides and proteins on the surface of the cells.Thus the presence of a bacterium capable of oxidizing the manganese from the surroundings was confirmed to be symbiotically associated with the marine sponge S. domuncula by monitoring its growth in axenic cultures. The reasons behind this association were studied.This bacterium displays a crucial role in the physiology/metabolism of the sponge by acting as a reversible Mn store in S. domuncula. According to this view, the presence of SubDo-03 bacteria is required as a protection against higher, toxic concentrations of Mn in the environment; manganese (II) after undergoing oxidation to manganese (IV), becomes an insoluble ion. Since only minute levels of manganese exist in the surrounding seawater a substantial accumulation of manganese has to arise, or a release by the bacterial-precipitated manganese (IV) is implicated to maintain the reversible balance. The other possible benefits provided by the bacterial association to the sponge could be in preventing cellular oxygen toxicity, help in nutrient scavenging and detoxification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this thesis was to increase the functionality of pristine DNA scaffolds by functionalizing them with fluorescent dyes and hydrophobic moieties. Two important steps were necessary to realize this aim successfully. First, nucleic acids needed to be synthesized making use of multidisciplinary toolbox for the generation and manipulation of polynucleic acids. The most important techniques were the solid phase synthesis involving the incorporation of standard and modified phosphoramidite building blocks as well as molecular biology procedures like the polymerase chain reaction, the bacterial amplification of plasmids and the enzymatic digestion of circular vectors. Second, and evenly important, was the characterization of the novel bioorganic hybrid structures by a multitude of techniques, especially optical measurements. For studying DNA-dye conjugates methods like UV/Vis and photoluminescence spectroscopy as well as time resolved luminescence spectroscopy were utilized. While these measurements characterized the bulk behavior of an ensemble of DNA-dye hybrids it was necessary for a complete understanding of the systems to look at single structures. This was done by single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy. For complete analysis the optical experiments were complemented by direct visualization techniques, i.e. high resolution transmission electron microscopy and scanning force microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Oberflächenfunktionalisierung von MnO Nanopartikeln (NP). Durch die Verwendung und Verbesserung verschiedener Polymere durch die Einbindung von Poly (Ethylen Glycol) (PEG), gelang es, die Löslichkeit dieser Nanopartikel in wässrigen Lösungen sowie in Körperflüssigkeiten zu erhöhen. Zusätzlich konnten diese Nanopartikel deutlich besser steril filtriert werden und zeigten eine erhöhte Aktivität alsrnKontrastmittel im MRT. Vorläufige Ergebnisse für die Verwendung von Silika als Schutzhülle für MnO NP werden ebenfalls kurz erläutert. Die verwendeten Polymere besaßen dabei zugängliche Aminogruppen, die eine weitere Funktionalisierung durch Bio-aktiver Gruppen ermöglichte. Der Nachweis einer erfolgreichen Bindung durch verschiedene Methoden wie SDS-PAGE, Western- und Northern Blot sowie die Verwendung unterschiedlicher FluoreszenzMessungen wird ebenfalls diskutiert. MnO NP und anderer magnetischer NP werden weiterhin auf ihr toxisches Verhalten gegenüber Caki1 und HeLa Zellen getestet. Dabei zeigte sich, dass MnO NP, im Gegensatz zu einigen Kupferoxiden, quasi nicht toxisch waren und das Proliferationsverhalten dieser Zellen quasi nicht beeinflussten. Weiterhin wurde ein Fluoreszenzfarbstoff, konkret Protoporphyrin IX, an die Oberfläche von MnO NP angebracht.Diese konnten dann erfolgreich als Kontrastmittel in der MRT verwendet werden und zeigten vielversprechende Ergebnisse für die Photodynamische Therapie. Desweiteren wird die Synthese des Antikörpers gegen p53 ausführlich erläutert. Dabei wurde genau darauf geachtet,dass dieser Antikörper dann an MnO NP gebunden werden kann.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure characterization of nanocrystalline intermediates and metastable phases is of primary importance for a deep understanding of synthetic processes undergoing solid-to-solid state phase transitions. Understanding the evolution from the first nucleation stage to the final synthetic product supports not only the optimization of existing processes, but might assist in tailoring new synthetic paths. A systematic investigation of intermediates and metastable phases is hampered because it is impossible to produce large crystals and only in few cases a pure synthetic product can be obtained. Structure investigation by X-ray powder diffraction methods is still challenging on nanoscale, especially when the sample is polyphasic. Electron diffraction has the advantage to collect data from single nanoscopic crystals, but is limited by data incompleteness, dynamical effects and fast deterioration of the sample under the electron beam. Automated diffraction tomography (ADT), a recently developed technique, making possible to collect more complete three-dimensional electron diffraction data and to reduce at the same time dynamical scattering and beam damage, thus allowing to investigate even beam sensitive materials (f.e. hydrated phases and organics). At present, ADT is the only technique able to deliver complete three-dimensional structural information from single nanoscopic grains, independently from other surrounding phases. Thus, ADT is an ideal technique for the study of on-going processes where different phases exist at the same time and undergo several structural transitions. In this study ADT was used as the main technique for structural characterization for three different systems and combined subsequently with other techniques, among which high-resolution transmission electron microscopy (HRTEM), cryo-TEM imaging, X-ray powder diffraction (XRPD) and energy disperse X-ray spectroscopy (EDX).rnAs possible laser host materials, i.e. materials with a broad band emission in the near-infrared region, two unknown phases were investigated in the ternary oxide system M2O-Al2O3-WO3 (M = K, Na). Both phases exhibit low purity as well as non-homogeneous size distribution and particle morphology. The structures solved by ADT are also affected by pseudo-symmetry. rnSodium titanate nanotubes and nanowires are both intermediate products in the synthesis of TiO2 nanorods which are used as additives to colloidal TiO2 film for improving efficiency of dye-sensitized solar cells (DSSC). The structural transition from nantubes to nanowires was investigated in a step by step time-resolved study. Nanowires were discovered to consist of a hitherto unknown phase of sodium titanate. This new phase, typically affected by pervasive defects like mutual layer shift, was structurally determined ab-initio on the basis of ADT data. rnThe third system is related with calcium carbonate nucleation and early crystallization. The first part of this study is dedicated to the extensive investigations of calcium carbonate formation in a step by step analysis, up to the appearance of crystalline individua. The second part is dedicated to the structure determination by ADT of the first-to-form anhydrated phase of CaCO3: vaterite. An exhaustive structure analysis of vaterite had previously been hampered by diffuse scattering, extra periodicities and fast deterioration of the material under electron irradiation. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.