10 resultados para Chapter 7 Bankruptcy

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ph.D. thesis deals with the conformational study of individual cylindrical polymer brush molecules using atomic force microscopy (AFM). Imaging combined with single molecule manipulation has been used to unravel questions concerning conformational changes, desorption behavior and mechanical properties of individual macromolecules and supramolecular structures. In the first part of the thesis (chapter 5) molecular conformations of cylindrical polymer brushes with poly-(N-isopropylacrylamide) (PNIPAM) side chains were studied in various environmental conditions. Also micelle formation of cylindrical brush-coil blockcopolymers with polyacrylic acid side chains and polystyrene coil have been visualized. In chapter 6 the mechanical properties of single cylindrical polymer brushes with (PNIPAM) side chains were investigated. Assuming that the brushes adopt equilibrium conformation on the surface, an average persistence length of lp= (29 ± 3) nm was determined by the end-to-end distance vs. contour length analysis in terms of the wormlike chain (WLC) model. Stretching experiments suggest that an exact determination of the persistence length using force extension curves is impeded by the contribution of the side chains. Modeling the stretching of the bottle brush molecule as extension of a dual spring (side chain and main chain) explains the frequently observed very low persistence length arising from a dominant contribution of the side chain elasticity at small overall contour lengths. It has been shown that it is possible to estimate the “true” persistence length of the bottle brush molecule from the intercept of a linear extrapolation of the inverse square root of the apparent persistence length vs. the inverse contour length plot. By virtue of this procedure a “true” persistence length of 140 nm for the PNIPAM brush molecules is predicted. Chapter 7 and 8 deal with the force-extension behavior of PNIPAM cylindrical brushes studied in poor solvent conditions. The behavior is shown to be qualitatively different from that in a good solvent. Force induced globule-cylinder conformational changes are monitored using “molecule specific force spectroscopy” which is a combined AFM imaging and SMFS technique. An interesting behavior of the unfolding-folding transitions of single collapsed PNIPAM brush molecules has been observed by force spectroscopy using the so called “fly-fishing” mode. A plateau force is observed upon unfolding the collapsed molecule, which is attributed to a phase transition from a collapsed brush to a stretched conformation. Chapter 9 describes the desorption behavior of single cylindrical polyelectrolyte brushes with poly-L-lysine side chains deposited on a mica surface using the “molecule specific force spectroscopy” technique to resolve statistical discrepancies usually observed in SMFS experiments. Imaging of the brushes and inferring the persistence length from a end-to-end distance vs. contour length analysis results in an average persistence length of lp = (25 ± 5) nm assuming that the chains adopt their equilibrium conformation on the surface. Stretching experiments carried out on individual poly-L-lysine brush molecules by force spectroscopy using the “fly-fishing” mode provide a persistence length in the range of 7-23 nm in reasonable accordance with the imaging results. In chapter 10 the conformational behavior of cylindrical poly-L-lysine brush-sodium dodecyl sulfate complexes was studied using AFM imaging. Surfactant induced cylinder to helix like to globule conformational transitions were observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co2Mn(1-x)Fe(x)Si with the Fe concentration ranging from x=0 to 1 will be reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co2Mn(1-x)Fe(x)Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co2FeAl(1-x)Si(x) with varying Si concentration will be reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x = 0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors will be reported. It will be shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers about the investigation of the theoretically predicted half-metallic completely compensated-ferrimagnet Mn$_3$Ga as a suitable material for spin torque transfer applications. The Curie temperature is above 730~K and the electronic structure calculations indicate a nearly half-metallic ferrimagnetic order with 88% spin polarization at the Fermi energy.}

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Phylogenie der Westpaläarktischen Langohren (Mammalia, Chiroptera, Plecotus) – eine molekulare Analyse Die Langohren stellen eine Fledermausgattung dar, die fast alle westpaläarktischen Habitate bist zum Polarkreis hin besiedeln und in vielerlei Hinsicht rätselhaft sind. In der Vergangenheit wurden zahlreiche Formen und Varietäten beschrieben. Trotzdem galt für lange Zeit, dass nur zwei Arten in Europa anerkannt wurden. Weitere Arten waren aus Nordafrika, den Kanaren und Asien bekannt, aber auch deren Artstatus wurde vielfach in Frage gestellt. In der vorliegenden Dissertation habe ich mittels molekularer Daten,der partiellen Sequenzierung mitochondrialer Gene (16S rRNA und ND1), sowie der mitochondrialen Kontrollregion, eine molekular Analyse der phylogenetischen Verwandtschaftsverhältnisse innerhalb und zwischen den Linien der westpaläarktischen Langohren durchgeführt. Die besten Substitutionsmodelle wurden berechnet und phylogenetische Bäume mit Hilfe vier verschiedener Methoden konstruiert: dem neighbor joining Verfahren (NJ), dem maximum likelihood Verfahren (ML), dem maximum parsimony Verfahren (MP) und dem Bayesian Verfahren. Sechs Linien der Langohren sind genetisch auf einem Artniveau differenziert: Plecotus auritus, P. austriacus, P. balensis, P. christii, P. sardus, und P. macrobullaris. Im Falle der Arten P. teneriffae, P. kolombatovici und P. begognae ist die alleinige Interpretation der genetischen Daten einzelner mitochondrialer Gene für eine Festlegung des taxonomischen Ranges nicht ausreichend. Ich beschreibe in dieser Dissertation drei neue Taxa: Plecotus sardus, P. kolombatovici gaisleri (=Plecotus teneriffae gaisleri, Benda et al. 2004) and P. macrobullaris alpinus [=Plecotus alpinus, Kiefer & Veith 2002). Morphologische Kennzeichen, insbesondere für die Erkennung im Feld, werden hier dargestellt. Drei der sieben Arten sind polytypisch: P. auritus (eine west- und ein osteuropäische Linie, eine sardische Linie und eine aktuell entdeckte kaukasische Linie, Plecotus kolombatovici (P. k. kolombatovici, P. k. gaisleri und P. k. ssp.) und P. macrobullaris (P. m. macrobullaris und P. m. alpinus). Die Verbreitungsgebiete der meisten Arten werden in dieser Arbeit erstmals ausschließlich anhand genetisch zugeordneter Tiere dargestellt.Die Untersuchung der ökologischen Einnischung der nun anerkannten Formen, insbesondere in Gebieten sympatrischer Verbreitung, bietet ein spannendes und lohnendes Feld für zukünftige Forschungen. Nicht zuletzt muss sich die Entdeckung eines beachtlichen Anteils kryptischer Diversität innerhalb der westpaläarktischen Langohren auch bei der Entwicklung spezieller Artenschutzkonzepte widerspiegeln.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heusler compounds as thermoelectric materialsrnrnThis work reports on Heusler and Half Heusler compounds and their thermoelectric properties. Several compounds were synthesized and their resistivity, Seebeck coefficient, thermal conductivity, and the figure of merit were determined. The results are presented in the following chapters.rnrnIn chapter 3 Co was substituted with Ni and Fe in the series TiCo1-x(Fe0.5Ni0.5)xSb. The substitution lead to a reduced loss of Sb during the synthesis. Further the Seebeck coefficient was increased and the thermal conductivity was reduced. These observations can be used to significantly improve the quality of TiCoSb based compounds in thermoelectric applications. rnrnIn chapter 4 the series TiCo1-xNixSnxSb1-x was investigated. Ni was substituted with Co and Sn with Sb. Especially for high Ni concentrations the figure of merit was enhanced compared to unsubstituted TiCoSb. This enhancement is based on the strong reduction of the thermal conductivity. The found values are among the lowest that have been determined up to date for Heusler compounds. rnrnIn chapter 5 Li containing Heusler compounds were theoretically and experimentally investigated. Li containing Heusler compounds are of special interest because the Li atoms scatter phonons efficiently. Therefore the thermal conductivity is decreased. The thermoelectric properties and especially the thermal conductivity are investigated in this chapter.rnrnIn chapter 6 several substitutions of TiCoSb were investigated. In the series TiCo1+xSb additional Co was introduced into the vacancies of the compound and the effect on the thermoelectric properties was measured. In the series TiCo1-xCuxSb Co was substituted with Cu. No significant enhancement of the ZT value were observed. In the series TiCoSb1-xBix Sb was substituted by Bi. The thermoelectric properties were significantly enhanced for small Bi concentrations. The Seebeck coefficient was increased and the resistivity was reduced at the same time. This unusual phenomenon is explained by band structure calculations.rnrnIn chapter 7 the material class of half metallic ferromagnets was investigated as a new materialclass for thermoelectric applications. The 26 valence electron compounds Co2TiSi, Co2TiGe, and Co2TiSn were used as model systems. The transport properties were determined theoretically. Then the properties were measured and compared to the calculated ones. The calculated values are in good agreement with the experimentally determined ones. The observed Seebeck coefficient has a big value and is nearly constant above the Curie temperature. This makes the materials appealing for the use as materials in thermocouples.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of the work presented in this dissertation was the morphology control in metallocene-catalyzed polyolefin synthesis. This was studied by selective immobilization techniques on a variety of supports such as porous polyurethane particles (Chapter 3), electrospun fibers (Chapter 4 and 5), inorganic-organic hybrid core-shell particles (Chapter 6) and hollow silica particles (Chapter 7). Another aspect of this dissertation was modulating a catalytic activity by controlling a size of boron-based cocatalysts (Chapter 8).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dissertation entitled "Tuning of magnetic exchange interactions between organic radicals through bond and space" comprises eight chapters. In the initial part of chapter 1, an overview of organic radicals and their applications were discussed and in the latter part motivation and objective of thesis was described. As the EPR spectroscopy is a necessary tool to study organic radicals, the basic principles of EPR spectroscopy were discussed in chapter 2. rnAntiferromagnetically coupled species can be considered as a source of interacting bosons. Consequently, such biradicals can serve as molecular models of a gas of magnetic excitations which can be used for quantum computing or quantum information processing. Notably, initial small triplet state population in weakly AF coupled biradicals can be switched into larger in the presence of applied magnetic field. Such biradical systems are promising molecular models for studying the phenomena of magnetic field-induced Bose-Einstein condensation in the solid state. To observe such phenomena it is very important to control the intra- as well as inter-molecular magnetic exchange interactions. Chapters 3 to 5 deals with the tuning of intra- and inter-molecular exchange interactions utilizing different approaches. Some of which include changing the length of π-spacer, introduction of functional groups, metal complex formation with diamagnetic metal ion, variation of radical moieties etc. During this study I came across two very interesting molecules 2,7-TMPNO and BPNO, which exist in semi-quinoid form and exhibits characteristic of the biradical and quinoid form simultaneously. The 2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is nearly unrealistic to observe the magnetic field induced spin switching. So we studied the spin switching of this molecule by photo-excitation which was discussed in chapter 6. The structural similarity of BPNO with Tschitschibabin’s HC allowed us to dig the discrepancies related to ground state of Tschitschibabin’s hydrocarbon(Discussed in chapter 7). Finally, in chapter 8 the synthesis and characterization of a neutral paramagnetic HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO were studied by DSC and EPR spectroscopy.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Arbeit beschäftigt sich mit der Kontrolle von Selbstorganisation und Mikrostruktur von organischen Halbleitern und deren Einsatz in OFETs. In Kapiteln 3, 4 und 5 eine neue Lösungsmittel-basierte Verabeitungsmethode, genannt als Lösungsmitteldampfdiffusion, ist konzipiert, um die Selbstorganisation von Halbleitermolekülen auf der Oberfläche zu steuern. Diese Methode als wirkungsvolles Werkzeug erlaubt eine genaue Kontrolle über die Mikrostruktur, wie in Kapitel 3 am Beispiel einer D-A Dyad bestehend aus Hexa-peri-hexabenzocoronene (HBC) als Donor und Perylene Diimide (PDI) als Akzeptor beweisen. Die Kombination aus Oberflächenmodifikation und Lösungsmitteldampf kann die Entnetzungseffekte ausgleichen, so dass die gewüschte Mikrostruktur und molekulare Organisation auf der Oberfläche erreicht werden kann. In Kapiteln 4 und 5 wurde diese Methode eingesetzt, um die Selbstorganisation von Dithieno[2, 3-d;2’, 3’-d’] benzo[1,2-b;4,5-b’]dithiophene (DTBDT) und Cyclopentadithiophene -benzothiadiazole copolymer (CDT-BTZ) Copolymer zu steuern. Die Ergebnisse könnten weitere Studien stimulieren und werfen Licht aus andere leistungsfaähige konjugierte Polymere. rnIn Kapiteln 6 und 7 Monolagen und deren anschlieβende Mikrostruktur von zwei konjugierten Polymeren, Poly (2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) PBTTT und Poly{[N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′- (2,2′-bithiophene)}, P(NDI2OD-T2)) wurden auf steife Oberflächen mittels Tauchbeschichtung aufgebracht. Da sist das erste Mal, dass es gelungen ist, Polymer Monolagen aus der Lösung aufzubringen. Dieser Ansatz kann weiter auf eine breite Reihe von anderen konjugierten Polymeren ausgeweitet werden.rnIn Kapitel 8 wurden PDI-CN2 Filme erfolgreich von Monolagen zu Bi- und Tri-Schichten auf Oberflächen aufgebracht, die unterschiedliche Rauigkeiten besitzen. Für das erste Mal, wurde der Einfluss der Rauigkeit auf Lösungsmittel-verarbeitete dünne Schichten klar beschrieben.rn