6 resultados para Cd4( )

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+CD25+ regulatorische T-Zellen (CD4+CD25+ Tregs) sind in der Lage die Proliferation und Cytokin-Produktion konventioneller T-Zellen zu supprimieren. Obwohl ein entscheidender Mechanismus dieses Prozesses die Inhibition der Interleukin-2 Produktion ist, sind die beteiligten Moleküle weitestgehend unbekannt. Interessanterweise entwickeln NFATc2-, NFATc3-doppeldefiziente Mäuse (DKO Mäuse) schwerste Autoimmunerkrankungen, so dass im Rahmen dieser Arbeit die Rolle der Transkriptionsfaktoren NFATc2 und NFATc3 bei der Entstehung von CD4+CD25+ Tregs und der CD4+CD25+ Treg-vermittelten Suppression konventioneller T-Zellen untersucht wurde. Es konnte gezeigt werden, dass zwar die Gesamtheit der peripheren CD4+CD25+ T-Zellen keinerlei suppressives Potential besitzt, eine Subpopulation dieser Zellpopulation, die sehr stark CD25 und GITR exprimiert (CD4+CD25++GITR++ T-Zellen), jedoch in der Lage ist kokultivierte konventionelle CD4+ T-Zellen in ihren Effektorfunktionen zu inhibieren. Allerdings ließen sich die konventionellen CD4+ T-Zellen aus DKO Mäusen nicht von CD4+CD25+ Tregs in ihrer Proliferation und Zytokinproduktion inhibieren. Es kann also abschließend gesagt werden, dass das Fehlen der Transkriptionsfaktoren NFATc2 und NFATc3 die Entstehung und Funktion von CD4+CD25+ Tregs nicht beeinflusst, jedoch konventionelle CD4+ T-Zellen resistent gegen eine CD4+CD25+ Treg-vermittelte Suppression werden lässt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+CD25+ regulatorische T-Zellen (CD4+CD25+ Tregs) sind essentiell an der Homöostase des Immunsystems beteiligt, indem sie eine antigenspezifische Toleranzinduktion in der Peripherie vermitteln und vor der Entstehung von Autoimmunerkrankungen schützen. Darüber hinaus sind diese Zellen wesentlich an der Kontrolle von Allergien, Infektionen und Tumoren beteiligt. Innerhalb dieser Arbeit konnten zwei bisher unbekannte Subpopulationen humaner CD4+CD25+ Tregs, isoliert aus dem peripheren Blut des Menschen, nachgewiesen werden. Diese Subpopulationen unterscheiden sich in ihrer Oberflächenexpression und exprimieren die Integrine a4b1 bzw. a4b7. Beide Treg-Subpopulationen supprimieren kokultivierte CD4+ T-Helferzellen Zellkontakt-abhängig und konvertieren gleichzeitig einen Teil dieser Zellen in sekundäre Suppressorzellen (iTregs). a4b1+ Tregs induzieren TGF-β-sezernierende iTregs, a4b7+ Tregs führen zur Bildung von IL-10-produzierenden iTregs. Differentielle Proteomanalysen humaner CD4+CD25+ Tregs, im Vergleich zu CD4+CD25- T-Helferzellen, führten zur Identifizierung von Galectin-10 als Markerprotein, das fast ausschließlich von CD4+CD25+ Tregs und nicht von CD4+ T-Helferzellen exprimiert wird. Galectin-10 ist ein intrazelluläres Protein, das essentiell für die funktionellen Eigenschaften humaner CD4+CD25+ Tregs ist. Die Blockade der Galectin-10-Bildung in den CD4+CD25+ Tregs durch RNA-Interferenz führte zu wesentlichen funktionellen Veränderungen der CD4+CD25+ Tregs. In Abwesenheit von Galectin-10 verlieren humane CD4+CD25+ Tregs ihre suppressiven Eigenschaften und ihren anergischen Phänotyp. Somit konnte mit Galectin-10 erstmals ein spezifischer Marker für humane CD4+CD25+ Tregs identifiziert werden, der wesentlich für den funktionellen Phänotyp dieser Regulatoren peripherer T-Zelltoleranz ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+CD25+ natürlich vorkommende regulatorische T-Zellen (nTregs) repräsentieren in Menschen und Mäusen etwa 5-10% aller peripheren CD4+ T-Zellen und besitzen eine wichtige Aufgabe im Immunsystem. nTregs sind entscheidend an der peripheren Toleranz beteiligt, da sie potenziell autoaggressive T-Zellen in ihrer Cytokinproduktion und Proliferation hemmen. Trotzdem ist der molekulare Mechanismus der nTreg-vermittelten Suppression und der Entwicklung dieser nTregs noch weitestgehend unbekannt. Vor einigen Jahren wurde der Transkriptionsfaktor FoxP3 (Forkhead Box P3) als der „Hauptregulator“ für die Entwicklung und Funktion von nTregs identifiziert. Um die suppressiven Fähigkeiten von nTregs optimal für therapeutische Zwecke einsetzen zu können, ist es daher von großer Notwendigkeit den zugrundeliegenden molekularen Mechanismus zu verstehen und Moleküle zu identifizieren, die an der Regulation des nTreg-spezifischen Faktors FoxP3 beteiligt sind. Ein Teil dieser Arbeit beschäftigt sich mit der microRNA155 (miR155) bei der nTreg-vermittelten Suppression. Es konnte gezeigt werden, dass die ektopische Expression der miR155 in konventionellen CD4+ T-Zellen zu einer Erhöhung der IL-2 Produktion führte, so dass die Zellen resistenter gegenüber der nTreg-vermittelten Suppression wurden. Die transiente Aufhebung der Suppression durch die miR155 bietet somit einen möglichen therapeutischen Einsatz bei der Behandlung von Tumorerkrankungen. Weiterhin konnte in dieser Arbeit demonstriert werden, dass der Transkriptionsfaktor HELIOS, oder vielmehr seine lange Isoform, HELIOS_long, eine entscheidende Rolle bei der Regulation der FoxP3 Expression einnimmt. Im Vergleich zu konventionellen CD4+ T-Zellen exprimieren nTregs hohe Mengen an HELIOS. In in vitro Studien zeigte sich, dass endogenes HELIOS in nTregs an den FoxP3 Promotor binden und diesen aktivieren kann. Die ektopische Expression von HELIOS_long führte in konventionellen CD4+ T-Zellen (HELIOSlowFoxP3-) nur in Gegenwart der Cytokine IL-2 und TGF-β zu einer gesteigerten FoxP3 Promotor Aktivität. Neben der Aktivierung konnte auch eine gesteigerte FoxP3 Protein Expression detektiert werden. Diese in vitro Daten konnten auch in einem in vivo Mausmodell verifiziert werden. Der adoptive Transfer HELIOS_long transfizierter CD4+ T-Zellen (HELIOSlowFoxP3-) in T-Zell-defiziente Mäuse führte zu der Induktion FoxP3+ T-Zellen mit suppressiven Fähigkeiten sowohl ex vivo als auch in vivo. Zusammengefasst zeigte sich, dass der Transkriptionsfaktor HELIOS einen stark fördernden Einfluss auf die Expression von FoxP3 besitzt. Diese Beobachtung bietet eine Möglichkeit für die Induktion stabiler regulatorischer T-Zellen als therapeutischen Einsatz für die Behandlung von Autoimmunerkrankungen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die allergische Kontaktdermatitis ist eine der häufigsten Berufserkrankungen, die durch die Exposition mit hohen Mengen eines Kontaktallergens ausgelöst wird. In Mausmodellen sehen wir, dass mittels einer Niedrigzonentoleranz (NZT) die Bildung einer Kontaktsensibilisierung unterdrückt werden kann. Bei der NZT führt die epikutane Applikation von subimmunogenen Dosen zu einer systemischen Toleranzentwicklung, die durch CD8+ Suppressor-T-Zellen Hapten-spezifisch vermittelt wird. Für die Generierung dieser CD8+ Suppressor-T-Zellen sind IL-10-sezernierende CD4+ regulatorischen T-Zellen (Tregs) notwendig. Aufbauend auf diesen Ergebnissen sollte in dieser Arbeit überprüft werden, ob natürlichen Tregs (nTregs) bei der NZT eine Rolle spielen und die Funktion und Aufgaben dieser Zellen während der NZT untersucht werden. rnWir konnten keine erhöhte Anzahl von nTregs während der Niedrigzonentoleranz gegenüber Kontaktallergenen im Vergleich zur CHS charakterisieren. Weiterhin haben wir gezeigt, dass eine Reduktion der nTregs durch Depletion mittels anti-CD25-Anikörper oder durch Cyclophosphamid-Gabe die Entstehung der CD8+ Suppressor-T-Zellen der NZT unterdrückt und damit die Entwicklung der Toleranzreaktion verhindert wird. Ferner wurde beobachtet, dass eine epikutane NZT Hapten-spezifisch durch CD8+ T-Zellen übertragen werden kann, während CD4+CD25+ T-Zellen eine Hapten-unspezifische Wirkung zeigten.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.