14 resultados para CHAPERONE DNAK
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Im Genom des Cyanobakteriums Synechocystis sp. PCC6803 sind vier homologe Hsp70-Proteine kodiert. Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die möglichen Funktionen der einzelnen Mitglieder der Hsp70-Proteinfamilie in dem Modellorganismus gewonnen bzw. bekannte Aufgabenbereiche erweitert werden. Wie für E. coli schon gezeigt, konnte auch für Synechocystis sp. nachgewiesen werden, dass eine Deletion des ribosomassoziierten Chaperons Trigger Factor ohne Beeinträchtigung der Zellviabilität möglich ist. Darüber hinaus war auch eine Doppeldeletion mit dnaK1 durchführbar. Als Auswirkung der Deletion ließ sich in den jeweiligen Deletionsstämmen eine veränderte Expression der homologen Hsp70-Proteine und Trigger Factor nachweisen. Mit Hilfe der Synechocystis sp.-Mutationsstämme ∆dnaK1, ∆dnaK2, ∆dnaK3, ∆tig und ∆dnaK1∆tig wurden Auswirkungen der Deletion bzw. Depletion umfassend dargestellt und daraus hervorgehende putative Funktionen eingehend diskutiert. Die Reduzierung der zellulären DnaK3-Konzentration um etwa 70 % führte im Depletionsstamm ΔdnaK3 zu weitreichenden physiologischen Änderungen hinsichtlich photosynthetischer Prozesse. Zusammen mit einer lichtabhängigen Expression, konnte DnaK3 als essentieller Faktor für die funktionelle Aufrechterhaltung der Thylakoidmembran identifiziert werden. Durch die Analyse des Proteoms und Lipidoms dunkeladaptierter Synechocystis sp.-Zellen konnte im Vergleich zu älteren Studien eine erheblich größere Anzahl von Proteinen detektiert und quantifiziert werden, womit neue Erkenntnisse über die physiologischen Veränderungen unter heterotrophem Wachstum sowie der Thylakoidmembranbiogenese gewonnen werden konnten.
Untersuchungen zur Funktion multipler DnaJ-Proteine in dem Cyanobakterium Synechocystis sp. PCC 6803
Resumo:
Sowohl in Synechocystis sp. PCC 6803 als auch in anderen Cyanobakterien konnten multiple DnaJ-Proteine nachgewiesen werden, deren Funktion jedoch noch weitestgehend unverstanden ist. Im Rahmen dieser Arbeit wurden die Funktionen der multiplen DnaJ-Proteine von Synechocystis sp. charakterisiert. Das DnaJ-Protein, Sll0897 gehört aufgrund seiner Domänenstruktur zu den Typ I-Proteinen, Slr0093 und Sll1933 zu den Typ II-Proteinen und Sll0909, Sll1011, Sll1384 und Sll1666 zu den Typ III DnaJ-Proteinen. Durch Komplementationsstudien des E. coli ΔdnaJ-Stammes OD259 konnte eine Komplementation des Wachstumsdefekts bei höheren Temperaturen durch die Proteine Slr0093 und Sll0897 gezeigt werden. In Synechocystis war eine komplette Disruption von sll1933 nicht möglich, weshalb das Protein Sll1933 unter normalen Wachstumsbedingungen essentiell ist. Doppelte Insertionmutationen waren lediglich bei der Kombination der Gene sll0909 und sll1384 möglich. Untersuchungen des Wachstumsverhaltens der dnaJ-Disruptions-stämme unter Hitze- und Kältestressbedingungen zeigten, dass das Protein Sll0897 eine wichtige Funktion bei der Stressantwort in Synechocystis besitzt und unter Hitzestressbedingungen essentiell ist. Eine vollständige Deletion des Gens sll0897 war Synechocystis sp. bereits unter normalen Wachstumsbedingungen nicht möglich. Bei den für ein Wachstum mindestens notwendigen Domänen des Sll0897 handelt es sich um die charakteristische J-Domäne und die Glycin-Phenylalanin-reiche Domäne. Unter Hitzestressbedingungen ist das Volllängen-Protein Sll0897 für ein Wachstum essentiell. rnNeben den in vivo Wachstumsexperimenten wurde eine Methode zur heterologen Expression der sieben DnaJ-Proteine in E. coli und einer nativen Reinigung von Slr0093, Sll0897, Sll0909 und Sll1666 etabliert. Untersuchungen zur Thermostabilität der gereinigten Proteine zeigten für das Slr0093 und Sll1666 einen reversiblen Prozess, wodurch sie auch nach dem Hitzestress noch als Faltungshelfer fungieren können. Bei den Proteinen Sll0897 und Sll0909 ist der Prozess jedoch nicht reversibel, so dass sie nach Hitzestresseinwirkung neu synthetisiert oder durch Chaperoneinwirkung korrekt gefaltet werden müssen. Die Affinitäts-„Pull-Down“ Analysen lieferten keine klaren Hinweise auf die DnaK-Interaktionspartner der Proteine Slr0093, Sll0897, Sll0909 und Sll1666, weshalb weitere Untersuchungen notwendig sind. Mit Hilfe der Gelfiltrationsanalysen konnten die errechneten molaren Massen der Proteine Slr0093 und Sll1666 bestätigt und beide Proteine in einer monomeren Form nachgewiesen werden. Die DnaJ-Proteine Sll0897 und Sll0909 konnten in zwei oligomeren Zuständen detektiert werden. Analysen der ATPase-Aktivität des DnaK2-Proteins alleine und des DnaK2-Proteins zusammen mit den DnaJ-Proteinen Slr0093, Sll0897, Sll0909 und Sll1666 zeigten eine Steigerung der ATP-Hydrolyserate bei der Interaktion von DnaK und DnaJ, wobei Sll0897 die größte Steigerung der ATPase-Aktivität des DnaK2 induzierte.
Resumo:
In der vorliegenden Arbeit wurde eine Analysenmethode auf Basis der Massenbestimmung über Elektrospray-Ionisation qualifiziert, mit der es möglich ist, den Gehalt beider in humanen Zellen vorliegenden isoformen Chaperone HSP90-alpha und HSP90-beta sowie deren Phosphorylierungsstatus in der sog. „charged linker“-Region (CLR) getrennt voneinander zu bestimmen. Die Quantifizierung dieser posttranslationalen Modifikation von HSP90 in der noch wenig untersuchten Region des Chaperons stellte eine besondere Herausforderung an das analytische Messsystem dar, da diese sich fast ausschließlich aus geladenen Aminosäuren zusammensetzt und eine hohe Sequenzhomologie der beiden Isoformen in humanen Zellen vorliegt. Mit dieser Methode ist es gelungen, sowohl die stärkere Expression beider Isoformen in Tumor-Zelllinien im Vergleich zu Nicht-Tumor-Zelllinien als auch signifikant höhere Level beider phosphorylierten Varianten in den Tumor-Zelllinien nachzuweisen. Des Weiteren konnte durch gezielte Arretierung der Tumor-Zelllinie HCT116 in der G0/G1-Phase des Zellzyklus der Nachweis erbracht werden, dass nur HSP90-alpha in diesem Ruhestadium der Zellteilung in der phosphorylierten Form vorliegt. rnDa die Phosphorylierung der CLR von HSP90 als ein Marker für die Substrataktivierung herangezogen werden kann, besteht jetzt die Möglichkeit, Auswirkungen von z. B. HSP90-Inhibitoren auf beide HSP90-Isoformen hinsichtlich ihrer Expression und Phosphorylierung durch die Casein Kinase II (CK II) im zellulären Umfeld zu testen.rnIn-vitro konnte die Phosphorylierung der CLR von HSP90-alpha und -beta mit der CK II an den rekombinant hergestellten Proteinen nachgestellt werden. Dieses typische Phosphorylierungs-Motiv (S-X-X-E/D) findet man bei sehr vielen Co-Chaperonen wie auch bei der Prostaglandin E Synthase p23, das ebenfalls durch eine in-vitro Kinase-Reaktion mit der CK II an drei Positionen phosphoryliert wurde. Durch ein Binde-Assay zeigte sich, dass p23 nur in dieser modifizierten Form an HSP90-alpha bindet. Das Bindeverhalten von p23 an die beta-Isoform wird durch diese Phosphorylierung jedoch nicht beeinflusst. Diese Erkenntnisse erweitern das Verständnis des bis dato beschriebenen Chaperon-Zyklus von HSP90 und zeigen deutliche Unterschiede in den Aktivierungszyklen beider Isoformen auf. Da die Casein Kinase II hier entscheidend in den durch HSP90 vermittelten Aktivierungsprozess eingreift, eröffnet sich ein weites Feld an Möglichkeiten, diese Prozesse an weiteren Co-Chaperonen und Substratproteinen zu studieren.rn
Resumo:
Verschiedene Krankheiten gehen mit einer fehlerhaften Vaskularisierung einher. Allerdings ist der Erfolg der derzeitig vorhandenen Therapieansätze, die sich z.B. auf VEGF fokussieren, beschränkt. Aus diesem Grund ist es wichtig, neue Strategien zur Regulation der Angiogenese zu entwickeln. Hierbei stehen neue Signaltransduktions-wege im Fokus, die sich als vielversprechend erweisen, um Angiogenese zu fördern oder zu inhibieren. Die Blutgefäßneubildung ist ein hochregulierter Prozess, der mit einer hohen Proteinsyntheserate verknüpft ist. Die Angiogenese wurde bereits mit dem ER-Stress Signaltransduktionsweg, der Unfolded Protein Response (UPR), in Verbindung gebracht (Zeng et al., 2013; Bouvier et al., 2012). Eine im Rahmen der vorliegenden Studie durchgeführte histologische Untersuchung konnte eine Fehlregulierung der Expression von UPR beteiligten Proteinen in vivo unter pathologischen Bedingungen gezeigt werden. Bemerkenswerter Weise war BiP, der Hauptsensor der UPR, in Endothelzellen von Angiosarkomen sehr stark exprimiert. In in vitro Experimenten wurde gezeigt, dass das Herunterregulieren von BiP mittels RNAi Einfluss auf die inflammatorische Antwort und die Bildung angiogener Strukturen in Endothelzellen nimmt. Das Herunterregulieren des Proteins BiP verstärkte die inflammatorische Antwort von HUVEC, was sich in einer gesteigerten Bildung von IL-8 und ICAM-1 äußerte und wurde auf die Aktivierung der UPR durch die verringerte Menge an BiP zurückgeführt. Der Phänotyp BiP-herunterregulierter Zellen entsprach dem untransfizierter Zellen, welcher durch das Cytoskelett und die Expression des endothelspezifischen Markers CD31 charakterisiert wurde. Im Gegensatz dazu änderte sich der Grad der Glykosylierung in transfizierten Zellen. Im Hinblick auf die Blutgefäßbildung, zeigten sich eine gehemmte Migration und eine inhibierte Bildung Gefäß-ähnlicher Strukturen in BiP-herunterregulierten Zellen. In diesen Zellen war die Expression von KDR auffallend stark inhibiert, wohingegen die Flt-1 Expression sich als gleichbleibend herausstellte, was ebenfalls auf die Aktivierung der UPR zurückgeführt werden konnte. Alternativ wäre der reduzierte Level des Proteins BiP im Hinblick auf die Funktion als Helferenzym in der Proteinfaltung eine mögliche Erklärung für die gehemmte Expression von KDR. Die Ergebnisse dieser Studie deuten darauf hin, dass stabile Spiegel von BiP die Regulierung der Angiogenese durch die Kontrolle der UPR in physiologischen Prozessen unterstützen könnte. Eine Fehlregulierung von BiP durch Unterdrückung der UPR, wie z.B. in malignen Tumoren, könnte Tumorzellen und beteiligten Endothelzellen einen Vorteil verschaffen und zu einer gestörten Vaskularisierung führen. Somit stellt das Stresssensorprotein BiP und die UPR einen potentiellen Angriffspunkt für die Regulation der Angiogenese dar.
Resumo:
Die Kapsidproteine L1 und L2 von humanen Papillomviren (HPV) werden im Cytoplasma infizierter Keratinocyten synthetisiert und gelangen unabhängig voneinander in den Kern (Florin et al. 2002b). L2 lokalisiert in speziellen Kerndomänen, sog. ND10, und induziert die Reorganisation dieser Kernstrukturen: L2-abhängig akkumuliert der transkriptionelle Modulator Daxx verstärkt in ND10 und außerdem kommt es zum Ausschluss des transkriptionellen Aktivators Sp100 aus diesen Domänen (Florin et al. 2002a). Im Anschluss an diese Umorganisation im Kern induziert L2 die Lokalisation des Kapsidproteins L1 in ND10 (Florin et al. 2002b). Da auch die Replikation und Transkription von Papillomviren in oder in unmittelbarer Nähe von ND10 stattfinden, werden ND10 als Orte der Papillomvirus-Morphogenese diskutiert (Swindle et al. 1999). Innerhalb dieser Arbeit konnte gezeigt werden, dass L1 und L2 im Cytoplasma der Zellen mit Chaperonen interagieren, und dass der Kerntransport von L2 von der L2/Hsc70-Assoziation abhängig ist. Hsc70, das mit dem C-Terminus von L2 assoziiert ist, wird in virusähnliche Partikel (VLPs) eingebaut. Erst durch die Verpackung von DNA in die Kapside kommt es zum Ausschluss von Hsc70 aus dem Papillomvirus-Kapsid. Ergebnisse dieser Arbeit lassen zudem vermuten, dass L2 über seinen C-Terminus mit Mikrotubuli interagieren kann, falls diese Aminosäure-Region in L2 nicht durch das Chaperon maskiert wird. Mit Hilfe dieser Erkenntnisse wurde eine Modellvorstellung für die Rolle von L2 während der Infektion und der Morphogenese von HPV entwickelt. Die ND10-Lokalisationsdomäne (NDLD) in L2 konnte wie bei keinem Protein zuvor auf eine sehr kurze Sequenz von 22 Aminosäuren eingeengt werden. Welcher Mechanismus für die ND10-Lokalisation verantwortlich ist, muss dagegen noch geklärt werden. Alle L2-Mutanten, die ND10-Lokalisation zeigen, induzieren auch die Reorganisation dieser Domänen. Dies spricht dafür, dass L2 direkt in ND10 die Veränderungen hervorruft und wahrscheinlich keine zusätzlichen Domänen in L2 daran beteiligt sind. Es konnten zwei L1-Interaktionsdomänen in L2 kartiert werden. Diese beiden Regionen in L2 konnten nicht genauer lokalisiert werden und umfassen möglicherweise mehrere L1-Interaktionsdomänen. Der Einbau von L2 in die Kapside kann nur im Kern infizierter Zellen stattfinden. Hierfür ist die Lokalisation der Kapsidproteine in ND10 nicht notwendig. Weiterführende Versuche müssen jedoch noch klären, inwieweit ND10 trotzdem unerlässlich für eine produktive Morphogenese sind. Zudem wurde klar, dass die ersten 150 Aminosäuren im L2-Protein für das L1/L2-Verhältnis in Kapsiden verantwortlich sind. In Virionen beträgt dieses Verhältnis 30:1, d. h. zwölf L2-Moleküle werden in die Partikel aus 360 L1-Molekülen eingebaut. Bei der Verwendung der Deletionsmutante L2-150/467 beträgt dieses Verhältnis 5:1. Weitere Analysen, welche Regionen von L1 und L2 miteinander interagieren und wodurch die Beschränkung des L1/L2-Verhältnisses in Papillomviren zustande kommt, können genauere Einblicke in den Aufbau der Kapside und speziell die Lage von L2 im Kapsid liefern.
Resumo:
Apolipoprotein J (ApoJ) ist ein sezerniertes heterodimeres 80kDa Glykoprotein mit zytoprotektiven und antiinflammatorischen Eigenschaften, das ein nahezu ubiquitäres Expressionsmuster aufweist. Eine stark erhöhte ApoJ-Expression ist mit neurodegenerativen Erkrankungen, Atherosklerose, myokardialem Infarkt sowie einer Vielzahl anderer pathophysiologischer Bedingungen assoziiert. Die potentielle Bedeutung von ApoJ umfasst eine Funktion als extrazelluläres Chaperon, Komplementinhibitor, NF-kB-Inhibitor sowie eine Beteiligung an der Endozytose von nekrotischen Zellfragmenten. Unter Bedingungen, die zu einer massiven Akkumulation von absterbenden Zellen führen, ist eine vermehrte Expression von ApoJ auf die überlebenden Nachbarzellen in den betroffenen Geweben beschränkt. Die molekularen Mechanismen, die dieser gesteigerten ApoJ-Genexpression zugrunde liegen, sind jedoch unbekannt. Untersuchungen unserer Arbeitsgruppe konnten zeigen, dass eine Inkubation mit nekrotischem Zellmaterial in vitro eine Akkumulation von ApoJ-mRNA in Fibroblasten der Zelllinie Rat1 induziert, was darauf hindeutet, dass unter pathophysiologischen Bedingungen von nekrotischen Zellen exponierte bzw. freigesetzte Faktoren zu einer gesteigerten ApoJ-Genexpression in umliegenden vitalen Zellen beitragen können. Die im Rahmen der vorliegenden Arbeit durchgeführten Untersuchungen zeigen eine Korrelation zwischen der Expression von Toll-like Rezeptoren (TLRs) in Fibroblasten (Rat1), glatten Gefäßmuskelzellen (CRL2018) sowie embryonalen Dottersackzellen (10A) und einer durch nekrotische Zellen induzierten ApoJ-mRNA-Expression in diesen Zelllinien. Es wird angenommen, dass TLRs neben pathogenassoziierten Strukturen (PAMPs) auch durch körpereigene Agonisten wie Hitzeschockproteine und Nukleinsäuren aktiviert werden. In weiterführenden Experimenten stellte sich unter anderem heraus, dass neben nekrotischen Zellen auch der TLR3-spezifische Agonist Poly(I:C), eine synthetische doppelsträngige RNA, ausschließlich in den beiden TLR3-exprimierenden Zelllinien CRL2018 und Rat1, nicht jedoch in TLR3-defizienten 10A-Zellen, die ApoJ-mRNA-Expression induziert. Darüber hinaus führt auch die Inkubation mit eukaryotischer RNA (Gesamt-RNA, t-RNA) zu einer Akkumulation von ApoJ-mRNA in CRL2018-Zellen. Die Ergebnisse dieser Arbeit zeigen erstmals, dass die Expression von ApoJ-mRNA durch extrazelluläre Ribonukleinsäuren in TLR3-abhängiger Weise induziert wird, was darauf hindeutet, dass in verletzten Geweben aus post-apoptotischen oder nekrotischen Zellen freigesetzte Ribonukleinsäuren zu einer vermehrten ApoJ-Genexpression in vitalen Nachbarzellen beitragen.
Resumo:
Das Amyloid-Vorläufer-Protein (APP) spielt eine zentrale Rolle in der Entstehung und Entwicklung von Morbus Alzheimer. Hierbei ist die proteolytische Prozessierung von APP von entscheidender Bedeutung. Das Verhältnis von neurotoxischen und neuroprotektiven Spaltprodukten, die über den amyloidogenen und nicht-amyloidogenen Weg der APP-Prozessierung gebildeten werden, ist für das Überleben von Neuronen und deren Resistenz gegen zytotoxische Stress-Stimuli von hoher Relevanz. Störungen der Calcium-Homöostase sind ein bekanntes Phänomen bei Morbus Alzheimer. Im ersten Teil der vorliegenden Arbeit wurde die Rolle von überexprimiertem APP in der Regulation des neuronalen Zelltods nach Calcium Freisetzung untersucht. Die Calcium Freisetzung aus dem endoplasmatischen Retikulum wurde durch die Inhibition der sarko- und endoplasmatischen Calcium-ATPasen (SERCA) ausgelöst. Dies führt zur Induktion der sogenannten „unfolded protein response“ (UPR) und zu einer Aktivierung von Effektor-Caspasen. Für APP-überexprimierende PC12 Zellen konnte bereits zuvor eine im Vergleich zur Kontrolle nach der durch Calcium Freisetzung-induzierten Apoptose eine erhöhte intrazelluläre Calcium Konzentration nachgewiesen werden. Über die Messung der Aktivierung von Effektor-Caspasen konnte zudem ein gesteigerter Zelltod in den APP-überexprimierenden Zellen gemessen werden. Zudem konnte gezeigt werden, dass der pro-apoptotische Transkriptionsfaktor CHOP, nicht aber die klassischen UPR-Zielgene spezifisch hochreguliert wurden. Die APP-modulierte gesteigerte Induktion von Apoptose nach Calcium Freisezung konnte durch Komplexierung der intrazellulären Calcium Ionen und durch Knockdown von CHOP im Vergleich zur Kontrolle gänzlich unterdrückt werden. Ferner bewirkte die Inhibition der Speicher-aktivierten Calcium-Kanälen (SOCC) eine signifikante Unterdrückung der beobachteten erhöhten intrazellulären Calcium Konzentration und der gesteigerten Apoptose in den APP-überexprimierenden PC12 Zellen. In diesem Teil der Arbeit konnte eindeutig gezeigt werden, dass APP in der Lage ist den durch Calcium-Freisetzung-induzierten Zelltod zu potenzieren. Diese Modulation durch APP verläuft in einer UPR-unabhängigen Reaktion über die Aktivierung von SOCC’s, einer erhöhten Aufnahme von extrazellulärem Calcium und durch erhöhte Induktion des pro-apoptotischen Transkriptionsfaktors CHOP. Im zweiten Teil dieser Arbeit wurde die sAPPα-vermittelte Neuroprotektion untersucht. Dabei handelt es sich um die N-terminale Ektodomäne von APP, die über die Aktivität der α-Sekretase prozessiert wird und anschließend extrazellulär abgegeben wird. Ziel dieser Versuchsreihe war die neuroprotektive physiologische Funktion von APP im Hinblick auf den Schutz von neuronalen Zellen vor diversen für Morbus Alzheimer relevanten Stress-Stimuli bzw. Apoptose-Stimuli zu untersuchen. Durch die Analyse der Effektor-Caspasen konnte gezeigt werden, dass sAPPα in der Lage ist PC12 Zellen potent vor oxidativem Stress, DNA-Schäden, Hypoxie, proteasomalem Stress und Calcium-Freisetzung zu schützen. Außerdem konnte gezeigt werden, dass sAPPα in der Lage ist den pro-apoptotischen Stress-induzierten JNK/Akt-Signalweg zu inhibieren. Eine Beteiligung des anti-apoptotischen PI3K/Akt-Signalwegs bei der sAPPα-vermittelten Protektion konnte über die Inhibition der PI3-Kinase ebenfalls demonstriert werden, die eine Aufhebung der sAPPα-vermittelten Neuroprotektion bewirkte. Diese Daten zeigen neue molekulare Mechanismen auf, die dem sAPPα-vermittelten Schutz vor pathophysiologisch relevanten Stress-Stimuli in neuronalen Zellen zugrunde liegen. Im letzten Teil der Arbeit wurden verschieden Gruppen von pharmakologischen Substanzen im Hinblick auf ihre neuroprotektive Wirkung untersucht und mit ihren Effekten auf den APP-Metabolismus korreliert. Die Untersuchungen ergaben, dass Galantamin, ein schwacher Acetycholinesterase Inhibitor und allosterisch potenzierender Ligand von nikotinischen Acetylcholin-Rezeptoren in der Lage war, naive, und mit noch höherer Effizienz APP-überexprimierende Zelllinien vor dem Stress-induzierten Zelltod zu schützen. Zudem bewirkte Galantamin in APP-überexprimierenden HEK293 Zellen eine rasche Erhöhung der sAPPα Sekretion, so dass hier von einer Rezeptor-vermittelten Modulation des APP Metabolismus ausgegangen werden kann. Omega-3 Fettsäuren wirken sich positiv auf die Membranfluidität von Zellen aus und es konnte bereits gezeigt werden, dass die Bildung des toxischen Aβ Peptids hierdurch vermindert wird. In Analogie zu Galantamin schützte die Omega-3 Fettsäure Docosahexaensäure (DHA) neuronale Zellen vor dem Stress-induzierten Zelltod, wobei der Schutz in APP-überexprimierenden Zellen besonders effizient war. Diese Daten legen nahe, dass die Aktivierung des antiamyloidogenen Wegs der APP-Prozessierung ein viel versprechender Ansatz für die Entwicklung neuer Therapien gegen Morbus Alzheimer sein könnte.
Resumo:
Im Mittelpunkt dieser Arbeit stand das große L-Hüllprotein (L) des Hepatitis B - Virus. L bildet eine ungewöhnliche duale Topologie in der ER-Membran aus, welche auch im reifen Viruspartikel erhalten bleibt. In einem partiellen, posttranslationalen Reifungsprozess wird die sogenannte PräS-Region von der zytosolischen Seite der Membran aus in das ER-Lumen transloziert. Aufgrund seiner dualen Topologie und der damit verbundenen Multifunktionalität übernimmt L eine Schlüsselfunktion im viralen Lebenszyklus. Ein Schwerpunkt dieser Arbeit lag deshalb darin, neue zelluläre Interaktionspartner des L-Hüllproteins zu identifizieren. Ihre Analyse sollte helfen, das Zusammenspiel des Virus mit der Wirtszelle besser zu verstehen. Hierfür wurde das Split - Ubiquitin Hefe - Zwei - Hybrid System eingesetzt, das die Interaktionsanalyse von Membranproteinen und Membran-assoziierten Proteinen ermöglicht. Zwei der neu identifizierten Interaktionspartner, der v-SNARE Bet1 und Sec24A, die Cargo-bindende Untereinheit des CoPII-vermittelten vesikulären Transports, wurden weitergehend im humanen Zellkultursystem untersucht. Sowohl für Bet1 als auch für Sec24A konnte die Interaktion mit dem L-Hüllprotein bestätigt und der Bindungsbereich eingegrenzt werden. Die Depletion des endogenen Bet1 reduzierte die Freisetzung L-haltiger, nicht aber S-haltiger subviraler Partikel (SVP) deutlich. Im Gegensatz zu Bet1 interagierte Sec24A auch mit dem mittleren M- und kleinen S-Hüllprotein von HBV. Die Inhibition des CoPII-vermittelten vesikulären Transportweges durch kombinierte Depletion der vier Sec24 Isoformen blockierte die Freisetzung sowohl L- als auch S-haltiger SVP. Dies bedeutet, dass die HBV - Hüllproteine das ER CoPII-vermittelt verlassen, wobei sie aktiv Kontakt zur Cargo-bindenden Untereinheit Sec24A aufnehmen. Der effiziente Export der Hüllproteine aus dem ER ist für die Virusmorphogenese und somit für den HBV - Lebenszyklus essentiell. rnEin weiterer Schwerpunkt dieser Arbeit basierte auf der Interaktion des L-Hüllproteins mit dem ER-luminalen Chaperon BiP. In der vorliegenden Arbeit wurde überprüft, ob BiP, ähnlich wie das zytosolische Chaperon Hsc70, an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt ist. Hierfür wurde BiP durch die ektopische Expression seiner Ko-Chaperone BAP und ERdj4 in seiner Substrat-bindenen Kapazität manipuliert. ERdj4, ein Mitglied der Hsp40 - Proteinfamilie, stimuliert die ATPase-Aktivität von BiP, was die Substratbindung stabilisiert. Der Nukleotid - Austauschfaktor BAP hingegen vermittelt die Auflösung des BiP - Substrat - Komplexes. Die Auswirkung der veränderten in vivo-Aktivität von BiP auf die posttranslationale PräS-Translokation wurde mit Proteaseschutz - Versuchen untersucht. Die ektopische Expression des positiven als auch des negativen Regulators von BiP resultierte in einer drastischen Reduktion der posttranslationalen PräS-Translokation. Ein vergleichbarer Effekt wurde nach Manipulation des BiP ATPase - Zyklus durch Depletion der zellulären ATP - Konzentration beobachtet. Dies spricht dafür, dass das ER-luminale Chaperon BiP, zusammen mit Hsc70, eine zentrale Rolle in der Ausbildung der dualen Topologie des L-Hüllproteins spielt. rnZwei weitere Proteine, Sec62 und Sec63, die sich für die posttranslationale Translokation in der Hefe als essentiell erwiesen haben, wurden in die Analyse der dualen Topologie des L-Hüllproteins einbezogen. Interessanterweise konnte eine rein luminale Ausrichtung der PräS-Region nach kombinierter Depletion des endogenen Sec62 und Sec63 beobachtet werden. Dies deutet an, dass sowohl Sec62 als auch Sec63 an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt sind. In Analogie zur Posttranslokation der Hefe könnte Sec62 als Translokon-assoziierter Rezeptor für Substrate der Posttranslokation, und damit der PräS-Region, dienen. Sec63 könnte mit seiner J-Domäne BiP zum Translokon rekrutieren und daraufhin dessen Substrat-bindende Aktivität stimulieren. BiP würde dann, einer molekularen Ratsche gleich, die PräS-Region durch wiederholtes Binden und Freisetzen aktiv in das ER-Lumen hereinziehen, bis eine stabile duale Topologie des L-Hüllproteins ausgebildet ist. Die Bedeutung von Sec62 und Sec63 für den HBV - Lebenszyklus wird dadurch untermauert, dass sowohl die ektopische Expression als auch die Depletion des endogenen Sec63 die Freisetzung L-haltiger SVP deutlich reduziert. rn
Resumo:
Many age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine disorders, including Huntington’s disease, are associated with the aberrant formation of protein aggregates. These protein aggregates and/or their precursors are believed to be causally linked to the pathogenesis of such protein conformation disorders, also referred to as proteinopathies. The accumulation of protein aggregates, frequently under conditions of an age-related increase in oxidative stress, implies the failure of protein quality control and the resulting proteome instability as an upstream event of proteinopathies. As aging is a main risk factor of many proteinopathies, potential alterations of protein quality control pathways that accompany the biological aging process could be a crucial factor for the onset of these disorders.rnrnThe focus of this dissertation lies on age-related alterations of protein quality control mechanisms that are regulated by the co-chaperones of the BAG (Bcl-2-associated athanogene) family. BAG proteins are thought to promote nucleotide exchange on Hsc/Hsp70 and to couple the release of chaperone-bound substrates to distinct down-stream cellular processes. The present study demonstrates that BAG1 and BAG3 are reciprocally regulated during aging leading to an increased BAG3 to BAG1 ratio in cellular models of replicative senescence as well as in neurons of the aging rodent brain. Furthermore, BAG1 and BAG3 were identified as key regulators of protein degradation pathways. BAG1 was found to be essential for effective degradation of polyubiquitinated proteins by the ubiquitin/proteasome system, possibly by promoting Hsc/Hsp70 substrate transfer to the 26S proteasome. In contrast, BAG3 was identified to stimulate the turnover of polyubiquitinated proteins by macroautophagy, a catabolic process mediated by lysosomal hydrolases. BAG3-regulated protein degradation was found to depend on the function of the ubiquitin-receptor protein SQSTM1 which is known to sequester polyubiquitinated proteins for macroautophagic degradation. It could be further demonstrated that SQSTM1 expression is tightly coupled to BAG3 expression and that BAG3 can physically interact with SQSTM1. Moreover, immunofluorescence-based microscopic analyses revealed that BAG3 co-localizes with SQSTM1 in protein sequestration structures suggesting a direct role of BAG3 in substrate delivery to SQSTM1 for macroautophagic degradation. Consistent with these findings, the age-related switch from BAG1 to BAG3 was found to determine that aged cells use the macroautophagic system more intensely for the turnover of polyubiquitinated proteins, in particular of insoluble, aggregated quality control substrates. Finally, in vivo expression analysis of macroautophagy markers in young and old mice as well as analysis of the lysosomal enzymatic activity strongly indicated that the macroautophagy pathway is also recruited in the nervous system during the organismal aging process.rnrnTogether these findings suggest that protein turnover by macroautophagy is gaining importance during the aging process as insoluble quality control substrates are increasingly produced that cannot be degraded by the proteasomal system. For this reason, a switch from the proteasome regulator BAG1 to the macroautophagy stimulator BAG3 occurs during cell aging. Hence, it can be concluded that the BAG3-mediated recruitment of the macroauto-phagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging. Future studies will explore whether an impairment of this adaptation process may contribute to age-related proteinopathies.
Resumo:
Wie alle Eukaryoten besitzen auch höhere Pflanzen ein mikrotubuläres Cytoskelett. Einige Funktionen dieses Cytoskeletts sind relativ stark konserviert, andere dagegen scheinen sehr pflanzenspezifisch zu sein. Dies betrifft insbesondere charakteristische mikrotubuläre Netzwerke, die bei der Neubildung und der Verstärkung der Zellwände wichtige Rollen übernehmen. Wie der Aufbau dieser Netzwerke kontrolliert wird, ist bisher relativ unklar. Typische Mikrotubuli organisierende Zentren (MTOC), insbesondere Centrosomen oder Spindelpolkörper, sind bei höheren Pflanzen nicht beobachtet worden. Von pilzlichen und tierischen Organismen weiß man, dass gamma-Tubulin (gTUB) mit seinen assoziierten Proteinen in den MTOC bei der Nukleation von Mikrotubuli eine Schlüsselfunktion hat. Dieses Mitglied der Tubulin-Superfamilie wird aber auch in Pflanzen gefunden, dessen genaue Funktion bisher unbekannt ist. Zu Beginn der Arbeit wurden mittels in silico Berechnungen Strukturmodelle des pflanzlichen gTUBs aus Nicotiana tabacum erarbeitet, da die Struktur, die zu einem Verständnis der pflanzlichen Wachstumsregulation beitragen könnte, bisher unbekannt ist. Auf Grundlage der bioinformatischen Daten konnte für weitere Studien eine notwendige gTUB-Deletionsmutante entwickelt werden. Für Röntgendiffraktionsstudien und gTUB-Interaktionspartneranalysen war die Verfügbarkeit verhältnismäßig großer Proteinmengen notwendig. Die Expression der gTUB-Volllängensequenz in gelöster und aktiver Form stellte einen immanent wichtigen Zwischenschritt dar. Das Escherichia coli T7/lacO-Expressionssystem lieferte, trotz vielversprechender Erfolge in der Vergangenheit, kein gelöstes rekombinantes gTUB. So wurden zwar verhältnismäßig hohe Expressionsraten erzielt, aber das rekombinante gTUB lag quantitativ als Inclusion bodies vor. Eine Variationen der Expressionsparameter sowie umfangreiche Versuche mittels verschiedenster Konstrukte sowie potentiell die Löslichkeit erhöhenden Tags gTUB in gelöster Form in E. coli zu exprimieren blieben erfolglos. Eine Denaturierung der Inclusion bodies und Rückfaltung wurde aufgrund der wohl bei der Tubulinfaltung notwendigen komplexeren Chaperone sowie thermodynamischer Überlegungen ausgeschlossen. Die höher evolvierte Chaperonausstattung war ein Hauptgrund für die Verwendung der eukaryotischen Hefe-Expressionssysteme K. lactis und des S. cerevisiae-Stammes FGY217 zur gTUB-Expression. So konnten nach der Selektion nur transgene Hefe-Zellen dokumentiert werden, die die gTUB-Expressionskassette nachweislich an der vorgesehenen Zielposition in ihrem Genom integrierten, aber keine dokumentierbare Expression zeigten. Die wahrscheinlichste Begründung hierfür ist, dass ein erhöhter intrazellulärer gTUB-Titer mit dem Zellwachstum und der Zellteilung dieser eukaryotischen Organismen interferierte und durch Rückkopplungen die rekombinante gTUB-CDS aus N. tabacum ausgeschaltet wurde. Der Versuch einer transienten gTUB-Überexpression in differenzierten Blattgeweben höherer Pflanzen war eine logische Konsequenz aus den vorherigen Ergebnissen und lieferte, wenn auch nicht die für eine Proteinkristallisation notwendigen Mengen, gelöstes gTUB. Bestrebungen einer stabilen Transfektion von A. thaliana oder BY-2-Zellkulturen mit einer gTUB-CDS lieferten keine transgenen Organismen, was starke Interferenzen der rekombinanten gTUB-CDS in den Zellen vermuten lies. Transfektionsversuche mit nur GFP tragenden Konstrukten ergaben hingegen eine hohe Anzahl an transgenen Organismen, die auch verhältnismäßig starke Expressionsraten zeigten. Die erzielten Proteinmengen bei der transienten gTUB-Überexpression in N. benthamiana Blattgeweben, in Co-Expression mit dem Posttransriptional Gene Silencing-Suppressorprotein p19, waren für einen Pull-Down sowie eine massenspektroskopische Analyse der Interaktionspartner ausreichend und ergaben Befunde. Eine abschließende Auswertung des erarbeiteten massenspektroskopischen Datensatzes wird jedoch erst dann möglich sein, wenn das Tabak-Proteom vollständig sequenziert ist. Die Erweiterung der bestehenden pflanzlichen Vergleichsdatenbanken um das bisher bekannte Tabak-Proteom vervielfachte die Anzahl der in dieser Studie identifizierten gTUB-Interaktionspartner. Interaktionen mit dem TCP1-Chaperon untermauern die Hypothese der zur Faltung pflanzlichen gTUBs notwendigen Chaperone. Beobachtete gTUB-Degradationsmuster in Verbindung mit Interaktionen des 26S-Proteasoms deuten auf eine Gegenregulationen bei erhöhtem gTUB-Titer auf Proteinebene hin. Da Blattgewebe selbst nur noch über eine sehr geringe und inhomogene Teilungsaktivität verfügen ist diese Regulation hoch spannend. Auch konnte durch Co-Expression des PTGS-Suppressorproteins p19 gezeigt werden, dass bei der gTUB-Expression eine Regulation auf RNA-Ebene erfolgt.
Resumo:
Clusterin (CLU), auch bekannt unter dem Namen Apolipoprotein J (ApoJ), wird von Zellen als hetreodimeres Glykoprotein exprimiert und in den extrazellulären Raum sezerniert. Es wird daher auch als sezerniertes CLU (sCLU) bezeichnet. Neben sCLU sind auch nicht-sezernierte Isoformen von CLU bekannt, die in der vorliegenden Arbeit erforscht wurden. Ziel dabei war es, die Expression, die Biogenese, sowie die Funktion dieser Proteine zu ergründen. Nicht-sezernierte CLU-Formen werden ausschließlich von Zellen exprimiert, die zuvor einer Stresssituation ausgesetzt wurden. Dies konnte insbesondere durch Kultur verschiedener Zelllinien bei erhöhter Temperatur oder durch Behandlung mit dem Proteasominhibitor MG 132 demonstriert werden, worauf neben sCLU auch 50 kDa bzw. 45 kDa große, nicht-sezernierte CLU-Proteine in geringen Mengen exprimiert wurden. Bezüglich der Biogenese dieser Proteine wurden mehrere Hypothesen bzw. Mechanismen diskutiert und in dieser Arbeit untersucht: alternative Translationsstartpunkte auf verschiedenen mRNAs, alternatives Splicing einzelner mRNAs sowie Retrotranslokation oder Mistranslokation von sCLU-Vorläuferproteinen. Um die Hypothesen eruieren zu können, musste zuerst eine Expressionsanalyse der bekannten CLU-mRNAs durchgeführt werden. Über 5’-RACE, semi-quantitative und quantitative PCRs wurde die Expression von vier CLU-mRNAs sowie deren Induktion auf Zellstress hin festgestellt. Variante 1 (BP211675) ist die dominante CLU-mRNA und macht über 99,5 % an CLU-mRNA in unbehandelten sowie in gestressten Zellen aus. Des Weiteren sind geringste Mengen der mRNA-Varianten 2 und 3 (NR_038335.1 und NR_045494.1) detektiert worden, deren Sequenzen sich lediglich in ihrem alternativen Exon 1 von Variante 1 unterscheiden. Schließlich konnte die Expression von Variante 1 [Δex2] festgestellt werden, welcher durch alternatives Splicing, i.e. Exon-skipping, das Exon 2 mit der ER-Signalsequenz-codierenden Region (SSCR) fehlt. HEK 293-Zellen, die transient mit je einer der rekombinanten CLU-mRNAs in Form rekombinanter cDNA transfiziert wurden, exprimierten neben großen Mengen sCLU auch geringe Mengen an den nicht-sezernierten CLU-Isoformen. Die anschließend durchgeführten in vitro Mutagenesen belegen, dass alle Isoformen ausgehend von distinkten Translationsstartpunkten aus synthetisiert werden. CLU1-449 (50 kDa) wird als prä-Proprotein von sCLU ausgehend von einem Startcodon auf Exon 2 unmittelbar vor der SSCR translatiert. Unter Zellstress-Bedingungen kann es zu einer Mistranslokation während der co-translationalen Translokation kommen, sodass Teile von CLU1-449 im Cytosol akkumulieren. CLU21-449 (50 kDa) wird ausgehend von einem CUG-Startcodon downstream der SSCR über interne Translationsinitiation gebildet. Analoges gilt für CLU34-449 (45 kDa), welches von einem AUG-Startcodon auf Exon 3 translatiert wird. CLU34-449 ist außerdem die einzige CLU-Form die von Variante 1 [Δex2] codiert wird. Somit konnten drei der in der Literatur postulierten Mechanismen zur Ent-stehung nicht-sezernierter CLU-Isoformen in gestressten Zellen verifiziert werden. Die Mistranslokation von sCLU-Vorläuferproteinen, welche entscheidend zum Auftreten der nicht-sezernierten CLU-Formen beiträgt, die Alternative Translationsinitiation an distinkten Startcodons sowie das alternative Splicing von CLU-mRNA-Variante 1. Weiterführende Experimente bestätigten, dass alle nicht-sezernierten CLU-Isoformen im Cytosol der Zellen lokalisiert sind und keine Glykosylierungen tragen. Somit konnte ein weiterer, in der Literatur kontrovers diskutierter Punkt bezüglich dieser Proteine geklärt werden. Abschließend wurde die physiologische Funktion der einzelnen CLU-Isoformen analysiert. Dabei zeigte sich, dass ausschließlich sCLU eine Chaperonaktivität zukommt, die es ermöglicht, durch Hitze denaturierte Zielproteine in Lösung zu halten. Diese Funktion konnte nicht für die cytosolischen Iso¬formen bestätigt werden. Weiterhin konnte keine Auswirkung einzelner CLU-Formen auf die intrinsische Apoptose oder auf den NF κB-vermittelten Signaltransduktionsweg festgestellt werden, obgleich entsprechende Einflüsse von anderen Arbeitsgruppen postuliert wurden. Die hier gemachten Beobachtungen werfen daher die Frage auf, ob den nicht-sezernierten, cytosolischen CLU-Isoformen überhaupt eine physiologische Funktion zukommt und stellen aktuelle Hypothesen bezüglich der Rolle von CLU bei pathophysiologischen Prozessen infrage.
Resumo:
Eine funktionierende Proteinqualitätskontrolle ist essenziell für die Vitalität einer Zelle. Das dynamische Gleichgewicht zwischen Proteinfaltung und -degradation wird von molekularen Chaperonen aufrechterhalten, deren Aktivität wiederum durch die Interaktion mit zahlreichen Cochaperonen moduliert wird. Das Cochaperon CHIP ist ein zentraler Faktor in Proteintriage-Entscheidungsprozessen, da es als Ubiquitinligase Chaperonsubstrate dem Abbau zuführt und somit die Chaperonmaschinerie direkt mit den Systemen der Proteindegradation verbindet. Um Polypeptide vor einem vorzeitigen Abbau zu schützen, wird die destruktive Aktivität von CHIP durch weitere Cochaperone reguliert. rnIn dieser Arbeit konnte die Hemmung der Ligaseaktivität von CHIP durch das Cochaperon BAG2 mechanistisch erstmals in einem zellulären System nachgewiesen werden. Dazu wurde die humane IMR-90 Fibroblasten Zelllinie verwendet. Die Ubiquitinierungsaktivität von CHIP wurde anhand von HSP72 als Modell-CHIP-Substrat untersucht. Durch die verringerte Ubiquitinierung, und damit dem reduzierten Abbau von HSP72, regulierte BAG2 dessen intrazelluläre Proteinspiegel, ohne dabei selbst eine Hitzeschockantwort zu induzieren. Überexprimiertes BAG2 wirkte sich trotz stabilisierter HSP72-Spiegel bei einem appliziertem Hitzestresses negativ auf die Zellvitalität aus, vermutlich da BAG2 durch die Inhibition von CHIP-vermittelter Ubiquitinierung massiv in das Gleichgewicht zwischen Substratfaltung und -degradation eingreift.rnDa sich die Mechanismen der Proteinqualitätskontrolle in der Alterung stark verändern und sich den wandelnden Bedingungen in der Zelle anpassen, wurde in einem zweiten Teil dieser Arbeit mit Hilfe des IMR-90 Zellsystems als etabliertes Modell zellulärer Seneszenz analysiert, inwieweit sich die Aktivität und die Regulation von CHIP durch BAG2 in der zellulären Alterung ändern. In seneszenten Zellen war HSP72 erheblich weniger ubiquitiniert als in jungen Fibroblasten, was auf eine reduzierte CHIP-Aktivität hinweist. Diese blieb jedoch durch BAG2 weiterhin modulierbar. Die Funktion von BAG2 als Inhibitor der Ubiquitinligase CHIP blieb demnach in seneszenten Zellen bestehen. In gealterten Fibroblasten regulierte BAG2 außerdem die Proteinspiegel des CHIP-Substrates und Seneszenzinitiators p53, was BAG2 eine mögliche Rolle in der Etablierung des Seneszenz-Phänotyps zuspricht. Weiterhin unterlagen die Proteinspiegel der beiden funktionell redundanten CHIP-Modulatoren BAG2 und HSPBP1 in der zellulären Alterung einer reziproken Regulation. In gealterten Mäusen trat die gegenläufige Veränderung der beiden Cochaperone gewebsspezifisch in der Lunge auf. Außerdem waren die BAG2-Proteinspiegel im Hippocampus gealterter Tiere signifikant erhöht.rnZusammenfassend konnte anhand der erzielten Ergebnisse die Funktion von BAG2 als Inhibitor von CHIP im zellulären System bestätigt werden. Außerdem durchlaufen die Aktivität und die Regulation von CHIP einen seneszenzspezifischen Adaptationsprozess, welcher für die Erhaltung der Proteostase in der Alterung relevant sein könnte und in welchem die Funktion von BAG2 als CHIP-Modulator möglicherweise eine wichtige Rolle spielt.rnZukünftige Studien könnten die komplexen Mechanismen weiterführend aufklären, mit denen CHIP-Aktivität reguliert wird. Dies kann helfen, der altersbedingten Abnahme an proteostatischer Kontrolle entgegenzuwirken und aberrante Proteinaggregation in altersassoziierten Erkrankungen vorzubeugen.rn
Resumo:
Das Lichtsammlerprotein (light harvesting chlorophyll a/b-binding protein, LHCP) ist das Apoprotein des Haupt-Lichtsammelkomplexes (LHCII) und stellt das häufigste Membranprotein der Erde dar. Nicht nur aufgrund seiner Abundanz, sondern auch wegen seiner speziellen Translokation als stark hydrophobes Membranprotein durch hauptsächlich wässrige Milieus von cytosolischen Ribosomen bis in die Thylakoidmembran der Chloroplasten ist der Biogeneseweg dieses Proteins von besonderem Interesse. LHCP ist kernkodiert und wird nach seinem Import in Chloroplasten als Transitkomplex mit dem stromalen Signalerkennungsprotein (cpSRP) zur Thylakoide geleitet. Der cpSRP-Komplex besteht aus dem cpSRP43 mit Chaperonfunktion für das LHCP sowie dem Co-Chaperon cpSRP54, welches eine entscheidende Rolle in der stromalen Zielführung des Transitkomplexes spielt. Sowohl die Proteinkonformation des LHCP während seiner Biogenese als auch der in vivo Faltungsablauf während der Thylakoidinsertion sind noch völlig unklar. Mithilfe der Elektronen-paramagnetischen Resonanz (EPR-)Spektroskopie sollte in dieser Arbeit der Faltungszustand des LHCP im Transitkomplex mit dem cpSRP oder in Teilkomplexen davon ermittelt werden.rnKopplungen von cpSRP43 und LHCP bestätigten, dass das Chaperon als Minimaleinheit zur quantitativen Solubilisierung des Membranproteins genügt. Gelfiltrationschromatographische (GFC-) Untersuchungen solcher Komplexe wiesen jedoch mit einem apparenten MW von ≥ 600 kDa ein sehr hochmolekulares Laufverhalten auf. Variierende Proteinstöchiometrien im Komplex zeigten in densitometrischen Auswertungen eine undefinierte Aggregation. Zusätze von Agenzien zur Vermeidung unspezifischer Wechselwirkungen wie z.B. Detergentien oder auch Salzzugabe zeigten keinen Einfluss auf die Aggregate. Volllängen-Transitkomplexe dagegen wiesen trotz unterschiedlichem Angebot von Einzelproteinen reproduzierbar definierte Stöchiometrien auf. Diese zeigten eine LHCP:cpSRP43-Stöchiometrie von 1,25. Dennoch hatten diese Komplexe mit einem apparenten MW von > 300 kDa einen mindestens dimeren Assemblierungsgrad. Eine Voraussetzung für eindeutige EPR-spektroskopische Distanzmessungen zwischen definierten Positionen im LHCP ist jedoch dessen monomolekularisiertes Vorliegen im Chaperonkomplex. Die Darstellung von ternären Transitkomplexen mit einem zu erwartenden apparenten MW von ~175 kDa war auch durch Zusatz verschiedener Proteinaggregationshemmer nicht möglich. Transitkomplexe mit einer verkürzten Version des cpSRP54 zeigten schließlich eine definierte 1:1-Komplexstöchiometrie bei gleichzeitiger polydisperser Komplexzusammensetzung. Es konnten ~60% dieser sogenannten 54M-Transitkomplexe nach GFC-Daten und densitometrischer Auswertung als potentiell ternär eingeschätzt werden. Darüber hinaus gelang es solche Ansätze durch GFC-Fraktionierung zusätzlich von oligomerisierten Spezies aufzureinigen. Dennoch zeigten die Präparate vor GFC-Fraktionierung ein (noch) zu hohes Aggregationssignal im Hintergrund und nach Fraktionierung ein zu schwaches Signal, um eine eindeutige Aussage der EPR-Daten zuzulassen. Dennoch bietet dieses ausgearbeitete Komplexbildungsprotoll in Verbindung mit der Verwendung von verkürztem cpSRP54 eine solide Basis, um weitere Versuche zu EPR-Messungen an cpSRP-gebundenem LHCP durchzuführen. rn
Resumo:
The marine world is an immense source of biodiversity that provides substances with striking potentials in medicinal chemistry and biotechnology. Sponges (Porifera) are marine animals that represent the most impressive example of organisms possessing the ability to metabolise silica through a family of enzymes known as silicateins. Complex skeletal structures (spicules) made of pure biogenic silica (biosilica) are produced under physiological conditions. Biosilica is a natural material comprising inorganic and organic components with unique mechanical, optical, and physico-chemical properties, including promising potential to be used for development of therapeutic agents in regenerative medicine. Unravelling the intimate physiological mechanisms occurring in sponges during the construction of their siliceous spicules is an on-going project, and several questions have been addressed by the studies proposed by our working group. In this doctoral work, the recombinant DNA technology is exploited for functional and structural characterisation of silicatein. Its precursors are produced as fusion proteins with a chaperone tag (named TF-Ps), and a robust method for the overexpression of native soluble proteins in high concentrations has been developed. In addition, it is observed and proven experimentally that the maturation of silicatein is an autocatalytic event that: (i) can be modulated by rational use of protease inhibitors; (ii) is influenced by the temperature of the environment; (iii) only slightly depends on the pH. In the same experimental framework, observations on the dynamics in the maturation of silicateins allow a better understanding of how the axial filaments form during the early stages of spicule construction. In addition, the definition of new distinct properties of silicatein (termed “structure-guiding” and “structure-forming”) is introduced. By homology models and through comparisons with similar proteins (the cathepsins), domains with significant surface hydrophobicity are identified as potential self-assembly mediators. Moreover, a high-throughput screening showed that TF-Ps could generate crystals under certain conditions, becoming promising for further structural studies. With the goal of optimise the properties of the recombinant silicatein, implementation of new production systems are tried for the first time. Success in the expression of silicatein-type proteins in insect and yeast cells, constitute a promising basis for further development, towards the establishment of an efficient method for the production of a high-value pure and soluble protein.