4 resultados para Blue-green laser
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wurde das Objektbewegungssehen des Goldfischs betrachtet. Zuerst musste eine geeignete Methode gefunden werden, diese Form der Bewegungswahrnehmung untersuchen zu können, da bisherige Experimente zum Bewegungssehen beim Goldfisch ausschließlich mit Hilfe der optomotorischen Folgereaktion gemacht wurden. Anschließend sollte die Frage geklärt werden, ob das Objektbewegungssehen genau wie das Bewegungssehen einer Großfeldbewegung farbenblind ist und welcher Zapfentyp daran beteiligt ist. Die Verwendung eines Zufallpunktmusters zur Dressur auf ein bewegtes Objekt hat sich als äußert erfolgreich herausgestellt. Diese Methode hat den Vorteil, dass sich die Versuchstiere ausschließlich aufgrund der Bewegungsinformation orientieren können. In den Rot-Grün- und Blau-Grün-Transferversuchen zeigte sich, dass das Objektbewegungssehen beim Goldfisch farbenblind ist, aber erstaunlicherweise nicht vom L-Zapfen vermittelt wird, sondern wahrscheinlich vom M-Zapfen. Welchen Vorteil es haben könnte, dass für die verschiedenen Formen der Bewegungswahrnehmung verschiedene Eingänge benutzt werden, kann mit diesen Versuchen nicht geklärt werden. Farbenblindheit des Bewegungssehens scheint eine Eigenschaft visueller Systeme allgemein zu sein. Beim Menschen ist diese Frage im Moment noch nicht geklärt und wird weiterhin diskutiert, da es sowohl Experimente gibt, die zeigen, dass es farbenblind ist, als auch andere, die Hinweise darauf geben, dass es nicht farbenblind ist. Der Vorteil der Farbenblindheit eines bewegungsdetektierenden visuellen Systems zeigt sich auch in der Technik beim Maschinen Sehen. Hier wird ebenfalls auf Farbinformation verzichtet, was zum einen eine Datenreduktion mit sich bringt und zum anderen dazu führt, dass korrespondierende Bildpunkte leichter gefunden werden können. Diese werden benötigt, um Bewegungsvektoren zu bestimmen und letztlich Bewegung zu detektieren.
Resumo:
Flowers attract honeybees using colour and scent signals. Bimodality (having both scent and colour) in flowers leads to increased visitation rates, but how the signals influence each other in a foraging situation is still quite controversial. We studied four basic questions: When faced with conflicting scent and colour information, will bees choose by scent and ignore the “wrong” colour, or vice versa? To get to the bottom of this question, we trained bees on scent-colour combination AX (rewarded) versus BY (unrewarded) and tested them on AY (previously rewarded colour and unrewarded scent) versus BX (previously rewarded scent and unrewarded colour). It turned out that the result depends on stimulus quality: if the colours are very similar (unsaturated blue and blue-green), bees choose by scent. If they are very different (saturated blue and yellow), bees choose by colour. We used the same scents, lavender and rosemary, in both cases. Our second question was: Are individual bees hardwired to use colour and ignore scent (or vice versa), or can this behaviour be modified, depending on which cue is more readily available in the current foraging context? To study this question, we picked colour-preferring bees and gave them extra training on scent-only stimuli. Afterwards, we tested if their preference had changed, and if they still remembered the scent stimulus they had originally used as their main cue. We came to the conclusion that a colour preference can be reversed through scent-only training. We also gave scent-preferring bees extra training on colour-only stimuli, and tested for a change in their preference. The number of animals tested was too small for statistical tests (n = 4), but a common tendency suggested that colour-only training leads to a preference for colour. A preference to forage by a certain sensory modality therefore appears to be not fixed but flexible, and adapted to the bee’s surroundings. Our third question was: Do bees learn bimodal stimuli as the sum of their parts (elemental learning), or as a new stimulus which is different from the sum of the components’ parts (configural learning)? We trained bees on bimodal stimuli, then tested them on the colour components only, and the scent components only. We performed this experiment with a similar colour set (unsaturated blue and blue-green, as above), and a very different colour set (saturated blue and yellow), but used lavender and rosemary for scent stimuli in both cases. Our experiment yielded unexpected results: with the different colours, the results were best explained by elemental learning, but with the similar colour set, bees exhibited configural learning. Still, their memory of the bimodal compound was excellent. Finally, we looked at reverse-learning. We reverse-trained bees with bimodal stimuli to find out whether bimodality leads to better reverse-learning compared to monomodal stimuli. We trained bees on AX (rewarded) versus BY (unrewarded), then on AX (unrewarded) versus BY (rewarded), and finally on AX (rewarded) and BY (unrewarded) again. We performed this experiment with both colour sets, always using the same two scents (lavender and rosemary). It turned out that bimodality does not help bees “see the pattern” and anticipate the switch. Generally, bees trained on the different colour set performed better than bees trained on the similar colour set, indicating that stimulus salience influences reverse-learning.
Resumo:
Robben sind amphibische marine Säugetiere. Das bedeutet, dass sie zweirnunterschiedliche Lebensräume, Wasser und Land, bewohnen. Ihre sensorischen Systeme müssen auf beide Medien abgestimmt sein. Gerade für das Sehvermögen ist es eine große Herausforderung, sich den zwei optisch unterschiedlichen Medien anzupassen. Deshalb sind Forscher an dem Sehen von marinen Säugern seit dem zwanzigsten Jahrhundert so sehr interessiert. rnBis heute wird kontrovers diskutiert, ob marine Säugetiere Farbe sehen können, da sie durch einen Gendefekt nur einen Zapfentyp besitzen und somit zu den Zapfen-Monochromaten gehören. Dressurexperimente zeigten jedoch, dass Seebären und Seelöwen in der Lage sind grüne und blaue Testfelder von Graustufen zu unterscheiden (Busch & Dücker, 1987; Griebel & Schmid, 1992).rnUm auszuschließen, dass die Tiere ein Farbensehen über die Unterscheidung von Helligkeit vortäuschen, wurde in der vorliegenden Arbeit zunächst die Kontrasterkennung untersucht und danach Tests auf Farbensehen durchgeführt. Als Versuchstiere dienten zwei Seehunde (Phoca vitulina) und zwei Südafrikanische Seebären (Arctocephalus pusillus). Alle Versuche wurden unter freien Himmel im Zoo Frankfurt durchgeführt. Den Tieren wurden immer drei Testfelder zur Auswahl geboten: zwei waren gleich und zeigten ein homogenen Hintergrund, das dritte zeigte ein Dreieck auf demselben Hintergrund. Die Tiere wurden auf das Dreieck dressiert. In den Versuchen zum Helligkeitskontrast wurden graue Dreiecke auf grauem Hintergrund verwendet. Das Dreieck wurde nicht erkannt bei einem Luminanz-Kontrast (K= LD/(LD+LH)) zwischen 0,03 und -0,12.rnBeim Test auf Farbensehen wurden die Farben Blau, Grün, Gelb und Orange auf grauem Hintergrund verwendet. Die Testreihen zeigten, dass jedes Tier auch in Bereichen von geringem Helligkeitskontrast hohe Wahlhäufigkeiten auf das farbige Dreieck erzielte und somit eindeutig die Farben Blau, Grün und Gelb sehen konnte. Lediglich bei der Farbe Orange kann keine Aussage zum Farbensehen getroffen werden, da das farbige Dreieck immer dunkler war als der Hintergrund. rnZusammenfassend konnte in dieser Arbeit gezeigt werden, dass Seehunde und Seebären in der Lage sind Farbe zu sehen. Vermutlich beruht diese Fähigkeit auf der Interaktion von Stäbchen und Zapfen. rn
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.