4 resultados para Block work masonry wall
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
This work describes the synthesis of a new class of rod-coil block copolymers, oligosubstituted shape persistent macrocycles, (coil-ring-coil block copolymers), and their behavior in solution and in the solid state.The coil-ring-coil block copolymers are formed by nanometer sized shape persistent macrocycles based on the phenyl-ethynyl backbone as rigid block and oligomers of polystyrene or polydimethylsiloxane as flexible blocks. The strategy that has been followed is to synthesize the macrocycles with an alcoholic functionality and the polymer carboxylic acids independently, and then bind them together by esterification. The ester bond is stable and relatively easy to form.The synthesis of the shape persistent macrocycles is based on two separate steps. In the first step the building blocks of the macrocycles are connected by Hagiara-Sogonaschira coupling to form an 'half-ring' as precursor, that contains two free acetylenes. In the second step the half-ring is cyclized by forming two sp-sp bonds via a copper-catalyzed Glaser coupling under pseudo-high-dilution conditions. The polystyrene carboxylic acid was prepared directly by siphoning the living anionic polymer chain into a THF solution, saturated with CO2, while the polydimethylsiloxane carboxylic acid was obtained by hydrosilylating an unsaturated benzylester with an Si-H terminated polydimethylsiloxane, and cleavage of the ester. The carbodiimide coupling was found to be the best way to connect macrocycles and polymers in high yield and high purity.The polystyrene-ring-polystyrene block copolymers are, depending on the molecular weight of the polystyrene, lyotropic liquid crystals in cyclohexane. The aggregation behavior of the copolymers in solution was investigated in more detail using several technique. As a result it can be concluded that the polystyrene-ring-polystyrene block copolymers can aggregate into hollow cylinder-like objects with an average length of 700 nm by a combination of shape complementary and demixing of rigid and flexible polymer parts. The resulting structure can be described as supramolecular hollow cylindrical brush.If the lyotropic solution of the polystyrene-ring-polystyrene block copolymers are dried, they remain birefringent indicating that the solid state has an ordered structure. The polydimethylsiloxane-ring-polydimethylsiloxane block copolymers are more or less fluid at room temperature, and are all birefringent (termotropic liquid crystals) as well. This is a prove that the copolymers are ordered in the fluid state. By a careful investigation using electron diffraction and wide-angle X-ray scattering, it has been possible to derive a model for the 3D-order of the copolymers. The data indicate a lamella structure for both type of copolymers. The macrocycles are arranged in a layer of columns. These crystalline layers are separated by amorphous layers which contain the polymers substituents.
Resumo:
Synthesis and characterization of monodisperse oligonucleotide-polypeptide di- and triblock copolymers are described. These block copolymers are promising building blocks for the formation of defined structures by sequential DNA self-assembly. The oligonucleotide sequences (ODN, 46 bases) obtained from standard solid phase synthesis were designed to form four-arm DNA junctions. The hybridization of the four single stranded oligonucleotides at room temperature to a stable four-arm junction is selective and quantitative. The junctions exhibit good thermal stability as proven by polyacrylamide gel electrophoresis (PAGE) and UV analysis. The second block consists of monodisperse elastin-like polypeptides (ELPs) with a pentapeptide repeat unit of (Val-Pro-Gly-Val-Gly) synthesized by genetic engineering. ODN-ELP diblock copolymers were obtained either by thiol coupling or by activated ester chemistry. Taking advantage of the endgroup control of both components (ODN, ELP), combination of the two different synthetic approaches leads to the synthesis of ODN-ELP-ODN triblock copolymers. Dynamic light scattering measurements of the single components and the synthesized diblock copolymers reveal their monodispersity. Hybridization of four ODN-ELP diblock copolymers carrying the four junction sequences shows quantitative self-assembly. In conclusion, this work provides the first example of the synthesis of perfectly defined ODN-ELP block copolymers and their potential use in DNA self-assembly.
Resumo:
Polycarbosilanes are a class of polymers at the interface between organic and inorganic chemistry. They are characterized by a high thermal and chemical inertness and high flexibility, especially pronounced for branched structures. Linear polycarbosilanes are well known as precursors for the preparation of SiCx ceramics. Additionally, more sophisticated architectures like dendrimers, hyperbranched polymers or block copolymers have been the subject of research for more than a decade. The scope of this work was to expand the properties and fields of application for polycarbosilane-containing structures. Thus, the work is divided in two major parts. The first part covers the synthesis and characterization of hyperbranched polycarbosilanes containing organometallic moieties. Hyperbranched poly-carbosilanes were synthesized using hydrosilylation of diallylmethylsilane and methyldiundecenylsilane. The degree of branching for polydiallymethylsilane was determined using standard 1H-NMR spectroscopy. The functional building blocks ferrocenyldimethylsilane and diferrocenylmethylsilane were synthesized which contain an isolated ferrocene unit or two ferrocenes bridged by silicon, respectively. Hyperbranched polycarbosilanes functionalized with ferrocenyl moieties were synthesized by modification of preformed polymers or by copolymerization of AB2 carbosilane monomers with AX-type ferrocenylsilanes. Polymers with Mn = 2500-9000g/mol and ferrocene contents of up to 67wt% were obtained. Electrochemical characterization by cyclic voltammetry revealed that polymers functionalized with isolated ferrocene units showed a single reversible oxidation wave, while voltammograms for polymers functionalized with diferrocenyl silane exhibited two well-separated reversible oxidation-reduction waves. This shows that the polymer bound ferrocenes bridged by silicon are electronically communicating and thus oxidation of the first ferrocene shifts the oxidation potential for the adjacent one. The polymers were utilized successfully for the preparation of modified electrodes with persistent and reproducible electrochemical response in organic solvents as well as in aqueous solution. The presented work has proven that ferrocenyl-functionalized hyperbranched polymers exhibit similar electrochemical properties as the analogous dendrimers. In a further approach it was shown that hyperbranched polymers containing organometallic moieties can be synthesized by polymerization of a new ferrocene-containing AB2 monomer - diallylferrocenylsilane. The second part of this work is dedicated to the preparation of core-functional hyperbranched polycarbosilanes. Low molecular weight ambifunctional molecules were synthesized that contain double bonds for the attachment of a polycarbosilane polymer as well as a second functionality available for further reaction and modification. Reactive vinyl groups in the core molecule allow an efficient attachment of hyperbranched polycarbosilane which was proven by MALDI-ToF and GPC. In combination with slow monomer addition techniques molecular weight and polydispersity of the polymers were controlled successfully. Core-functional polymers were characterized by NMR-spectroscopy, MALDI-ToF and GPC. Polymers with polydispersities <2 and molecular weights up to 5300g/mol were obtained. Transformation of the double bonds of the carbosilane was demonstrated with various silanes using hydrosilylation reaction or hydrogenation. Additionally, the core-functionality was varied resulting in polymers with bromo-, phthalimide-, amine- or azide moieties. Thus, a versatile synthetic strategy was developed that allows the synthesis of tailor-made polymers.A promising approach is the application of the polymer building blocks in copolymer synthesis. Bisglycidolization of amine-functional polycarbosilanes produces macro-initiators that are suitable for the multibranching-ring opening polymerization of glycidol. This experiments lead to the first example of hyperbranched-hyperbranched amphiphilic block copolymers, hb-PG-b-hb-PCS. Furthermore, the implementation of copper-catalyzed cycloaddition between azide-functional polycarbosilane and alkyne-functional poly(ethoxyethyl glycidylether) resulted in linear-hyperbranched block copolymers. The facile removal of acetal protecting groups provided convenient access to lin-PG-b-hb-PCS.
Resumo:
In this thesis I present a new coarse-grained model suitable to investigate the phase behavior of rod-coil block copolymers on mesoscopic length scales. In this model the rods are represented by hard spherocylinders, whereas the coil block consists of interconnected beads. The interactions between the constituents are based on local densities. This facilitates an efficient Monte-Carlo sampling of the phase space. I verify the applicability of the model and the simulation approach by means of several examples. I treat pure rod systems and mixtures of rod and coil polymers. Then I append coils to the rods and investigate the role of the different model parameters. Furthermore, I compare different implementations of the model. I prove the capability of the rod-coil block copolymers in our model to exhibit typical micro-phase separated configurations as well as extraordinary phases, such as the wavy lamellar state, percolating structuresrnand clusters. Additionally, I demonstrate the metastability of the observed zigzag phase in our model. A central point of this thesis is the examination of the phase behavior of the rod-coil block copolymers in dependence of different chain lengths and interaction strengths between rods and coil. The observations of these studies are summarized in a phase diagram for rod-coil block copolymers. Furthermore, I validate a stabilization of the smectic phase with increasing coil fraction.rnIn the second part of this work I present a side project in which I derive a model permitting the simulation of tetrapods with and without grafted semiconducting block copolymers. The effect of these polymers is added in an implicit manner by effective interactions between the tetrapods. While the depletion interaction is described in an approximate manner within the Asakura-Oosawa model, the free energy penalty for the brush compression is calculated within the Alexander-de Gennes model. Recent experiments with CdSe tetrapods show that grafted tetrapods are clearly much better dispersed in the polymer matrix than bare tetrapods. My simulations confirm that bare tetrapods tend to aggregate in the matrix of excess polymers, while clustering is significantly reduced after grafting polymer chains to the tetrapods. Finally, I propose a possible extension enabling the simulation of a system with fluctuating volume and demonstrate its basic functionality. This study is originated in a cooperation with an experimental group with the goal to analyze the morphology of these systems in order to find the ideal morphology for hybrid solar cells.