1 resultado para Bloch
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
For an infinite field F, we study the integral relationship between the Bloch group B_2(F) and the higher Chow group CH^2(F,3) by proving some relations corresponding to the functional equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence 0 → Tor^1(F^× ,F^×)∼ → CH^2(F,3) → B_2(F) → 0 are identified with homology groups of the cycle complex Z^2(F,•) computing Bloch’s higher Chow groups. Using these results, we give explicit cycles in motivic cohomology generating the integral motivic cohomology groups of some specific number fields and determine whether a given cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In principle, this enables us to find a presentation of the codimension two Chow group of an arbitrary number field. Finally, we also prove some relations in the higher Chow groups of codimension three modulo 2-torsion coming from relations in the higher Bloch group B_3(F) modulo 2-torsion. Further, we can prove a series of relations in CH^ 3(Q(zeta_p),5) for a primitive pth root of unity zeta_p.