5 resultados para Bifurcação de Hopf

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung:In dieser Arbeit werden die Abzweigung stationärer Punkte und periodischer Lösungen von isolierten stationären Punkten rein nichtlinearer Differentialgleichungen in der reellenEbene betrachtet.Das erste Kapitel enthält einige technische Hilfsmittel, während im zweiten ausführlich das Verhalten von Differentialgleichungen in der Ebene mit zwei homogenen Polynomen gleichen Grades als rechter Seite diskutiert wird.Im dritten Kapitel beginnt der Hauptteil der Arbeit. Hier wird eine Verallgemeinerung des Hopf'schen Verzweigungssatzes bewiesen, der den klassischen Satz als Spezialfall enthält.Im vierten Kapitel untersuchen wir die Abzweigung stationärer Punkte und im letzten Kapitel die Abzweigung periodischer Lösungen unter Störungen, deren Ordnung echt kleiner ist, als die erste nichtverschwindende Näherung der ungestörten Gleichung.Alle Voraussetzungen in dieser Arbeit sind leicht nachzurechnen und es werden zahlreiche Beispiele ausführlich diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Vorhersagen störungstheoretischer Quantenfeldtheorienzeigen eine gute Übereinstimmung mit experimentellgemessenen Werten. Bei diesen störungstheoretischenBerechnungen treten allerdings Ultraviolettdivergenzen auf,die keine physikalische Interpretation der Ergebnisseermöglichen. Durch Renormierung dieser Theorien erhält manjedoch berechnbare Ergebnisse mit hoher experimentellerVorhersagekraft. Der Renormierungsvorgang kann durch eineHopfalgebra, die sogenannte 'Hopfalgebra der Wurzelbäume',beschrieben werden.Die vorliegende Arbeit leistet einen Beitrag für weitereUntersuchungen dieser Hopfalgebrenstruktur und Bestimmungneuer mathematischer Methoden zur Beschreibung desRenormierungsvorgangs. Dazu wird die algebraische Strukturvon Renormierung aus der Sicht der Kategorientheorie und derTheorie von Operaden untersucht.Aus Sicht der Kategorientheorie lassen sich die den Renormierungsprozess beschreibenden mathematischen Größen ineiner Kategorie zusammenfassen. Eine additive Strukturermöglicht dabei die Berücksichtigung beliebigerRenormierungsschemata. Auf dieser Kategorie kann einassoziativitätsverletzendes Produkt definiert werden, wobeidie Verletzung durch einen sogenannten 'Assoziator'kontrolliert werden kann. Die Struktur wird auf die einerHopfkategorie erweitert, so daß eine kategorientheoretischeUntersuchung des Renormierungsprozesses ermöglicht wird.Diese Hopfkategorie wird aus Sicht von Renormierunginterpretiert, wobei Beispielrechnungen die definierteStruktur verdeutlichen.Aus algebraischer Sicht kann aufgrund der graphischenDarstellung des Operadenproduktes eine Bijektivität zwischenWurzelbäumen und Operaden gezeigt werden. Auf diesenOperaden kann wiederum eine Hopfalgebrenstruktur definiertwerden. Beispiele verdeutlichen diese Bijektivität.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.