2 resultados para Astaxanthin

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketocarotinoide sind in den Dauerstadien vieler Grünalgen anzutreffen und aufgrund ihres hohen antioxidativen Potentials vermutlich von großer Bedeutung für deren Überleben unter ungünstigen Umweltbedingungen. Daneben ist die Aufnahme von Ketocarotinoiden im Zuge der Nahrungskette für verschiedene Tiere lebensnotwendig. Trotz zahlreicher Untersuchungen des Biosynthesewegs der Ketocarotinoide, vorwiegend in der Grünalge Haematococcus pluvialis, sind viele grundlegende Aspekte der Synthese nicht verstanden. Dazu zählt neben dem genauen Reaktionsmechanismus des ketolierenden Enzyms ß-Carotin-Ketolase (BKT) vor allem der noch nicht aufgeklärte Zusammenhang zwischen Lipidsynthese und Ketocarotinoidakkumulation. Nach der Entdeckung eines zur BKT aus H. pluvialis homologen Gens in einer EST-Datenbank des Modellorganismus Chlamydomonas reinhardtii wurden im Rahmen der vorliegenden Forschungsarbeit die als orange-rot beschrieben Zygosporen von C. reinhardtii als mögliches ketocarotinoidhaltiges Zellstadium untersucht. Dabei wurden für C. reinhardtii erstmals Ketocarotinoide in Konzentrationen bis zu einem Femtomol pro Zelle nachgewiesen und mittels HPLC-Analytik, chemischer Derivatisierung und Massenspektrometrie zweifelsfrei identifiziert. Es wurden, in aufsteigender Quantität, drei Ketocarotinoide detektiert: Canthaxanthin, Astaxanthin und 4-Ketolutein. Letzteres wurde bisher selten in anderen ketocarotinoidakkumulierenden Organismen beschrieben und stellt, im Gegensatz zu den vom ß-Carotin abgeleiteten Pigmenten Astaxanthin und Canthaxanthin, ein Pigment des α-Carotin-Zweiges dar. Astaxanthin und 4-Ketolutein wurden vor allem in Form von Pigment-Fettsäureestern nachgewiesen. Mit Hilfe von Paarungsansätzen mit der lor1-Mutante, die keine α-Carotinoide synthetisieren kann, und Vergleichen mit Ketocarotinoiden aus H. pluvialis konnte gezeigt werden, dass 4 Ketolutein nur als Monoacylester in der Alge vorliegt, während Astaxanthin sowohl als Monoacyl- wie auch als Diacylester anzutreffen ist. Ketocarotinoide wurden innerhalb der ersten 14 Tage der Zygotenreife gebildet. Transmissionselektronenmikroskopische Aufnahmen der Zygoten dokumentierten, dass damit ein starker Umbau der Zelle einherging, der sich vor allem in der Reduktion des Chloroplasten und der Bildung von Lipidtröpfchen darstellte. Letztere nahmen bei reifen Zygosporen den größten Teil des Zelllumens ein und wurden mittels dünnschichtchromatografischer Analysen als Neutralfette identifiziert. Der sinkende Zellgehalt an Carotinoiden im Zuge der Zygosporenreifung und Inhibitorexperimente an reifenden Zygoten mittels Norflurazon zeigten, dass für die Ketocarotinoidakkumulation keine Neusynthese von Carotinoiden nötig ist und lassen die Hypothese zu, dass C. reinhardtii die im Zuge der Chloroplastenreduktion freigesetzten Photosynthese-Carotinoide als Substrate für die Ketocarotinoidsynthese verwendet. Physiologische Bedeutung könnte den Ketocarotinoiden vor allem beim Schutz der Speicherlipide vor Peroxidation durch reaktive Sauerstoffspezies zukommen. Diese Reservestoffe stellen die Energieversorgung während des Auskeimens der Zellen sicher. Durch den im Rahmen der vorliegenden Forschungsarbeit dokumentierten Nachweis der Ketocarotinoidakkumulation in C. reinhardtii können die Ketocarotinoidsynthese und vor allem der Zusammenhang von Lipid- und Ketocarotinoidakkumulation zukünftig mit Hilfe der für diesen Modellorganismus vorliegenden umfangreichen molekulargenetischen Methoden detailliert untersucht werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grünalgen bilden zur Überdauerung schlechter Umweltbedingungen Ruhestadien, die sich durch Ausbildung einer festen Zellwand, die Reduktion des Plastiden und die starke Akkumulation von Speicherfetten und Ketocarotinoiden im Zytosol auszeichnen. Obwohl Ketocarotinoide in Grünalgen seit über vierzig Jahren beforscht werden, gab es hierzu noch wenige molekularbiologische Untersuchungen. Im Vorfeld meiner Promotion wurde durch unsere Arbeitsgruppe entdeckt, dass auch der molekular gut zugängliche Modellorganismus Chlamydomonas reinhardtii im Zygotenstadium große Mengen an Ketocarotinoiden bildet. Neben dem zu erwartenden Ketocarotinoid Astaxanthin fanden wir große Mengen des bisher nur in einer Grünalge beschriebenen 4-Ketoluteins. Vorversuche ließen die Vermutung aufkommen, dass dieses Pigment bei der Untersuchung der Pigmentausstattung in Dauerstadien von vielen Grünalgen bisher übersehen wurde. rnIn der vorliegenden Arbeit wurde daher zunächst die Pigmentzusammensetzung von Dauerstadien der bereits gut untersuchten Grünalgen Muriella zofingiensis und Scenedesmus rubescens durch Vergleich mit dem Ketocarotinoidmuster aus Dauerstadien von C. reinhardtii und Fritschiella tuberosa reevaluiert und dabei erstmals das Vorkommen signifikanter Mengen an 4-Ketolutein nachgewiesen. Außerdem zeigte sich, dass die als bisheriger Modellorganismus der Ketocarotinoidbiosynthese in Grünalgen sehr gut untersuchte Alge Haematococcus pluvialis eher eine Ausnahme darstellt, da ihre Dauerstadien als einzige der hier untersuchten Algen nur minimale Mengen von 4 Ketolutein aufwiesen. Diese Beobachtungen machen es sehr wahrscheinlich, dass die Fähigkeit zur Bildung von 4-Ketolutein unter den Grünalgen wesentlich weiter verbreitet ist als bisher angenommen. Das sekundäre Carotinoid 4-Ketolutein kam in den Dauerstadien der Grünalgen neben seiner freien Form ausschließlich als Monoacylester vor, im Gegensatz zu Astaxanthin, das als mono- und diacylierte Form auftrat. rnÜber die Analyse der Pigmentausstattung hinaus konnten die entscheidenden Schritte des Synthesewegs der Ketocarotinoide in C. reinhardtii durch funktionelle Charakterisierung der beteiligten Enzyme in Bakterien aufgeklärt werden. Als Basis für die Charakterisierungen wurde ein umfangreiches Portfolio von carotinogenen E. coli-Bakterien etabliert, darunter α Carotin und Lutein produzierende Stämme, die bisher nicht zur Verfügung standen. Das wurde durch die Klonierung der Lycopinzyklase (OluLCY) aus der Grünalge Ostreococcus lucimarinus möglich, die eine Sonderolle unter den Zyklasen einnimmt, da sie die Lycopin-β-Zyklase und Lycopin-ε-Zyklase in einem Fusionsenzym vereint. Vorteile dieses Fusionsenzyms sind die Expressionskontrolle durch nur einen Promotor und die weitgehend konstante Stöchiometrie seiner Produkte α-Carotin und β-Carotin, was die OluLCY für die biotechnologische Anwendung prädestiniert.rnDie funktionelle Charakterisierung der Carotinoidbiosyntheseenzyme aus C. reinhardtii umfasste das Schlüsselenzym der Ketocarotinoidbiosynthese, die β-Carotin-Ketolase (BKT), sowie die Carotinoid-Hydroxylasen CHYB, CYP97A5 und CYP97C3. Dabei wurde für das BKT-Enzym aus C. reinhardtii nachgewiesen, dass es nicht nur die Ketolierung von β Carotin zu Canthaxanthin und von Zeaxanthin zu Astaxanthin, sondern auch die Bildung der von α-Carotin abgeleiteten Ketocarotinoide wie 4-Keto-α-Carotin und 4 Ketolutein katalysieren kann.rn