11 resultados para Amyloid beta-Peptides
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The amyloid peptide (Aß), a normal constituent of neuronal and non-neuronal cells, has been shown to be a major component of the extracellular plaque of Alzheimer’s disease (AD). The interaction of Aß peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of AD. In this study, we have developed peptide-tethered artificial lipid membranes by the Langmuir-Blodgett and Langmuir-Schaefer methods. Anti-Aß40-mAb labeled with a fluorophore was used to probe the Aß40 binding to the model membrane system. Systematic studies on the antibody or Aß-membrane interactions were carried out in our model systems by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy (SPFS). Aß adsorption is critically determined by the lipid composition of the membranes. Aß specifically binds with membranes of sphingomyelin, and this preferential adsorption was markedly amplified by the addition of sterols (cholesterol or 25-OH-Chol). Fluorescence microscopy indicated that 25-OH-Chol could also form micro-domains with sphingomyelin as cholesterol does at the conditions used for the built-up of the model membranes. Our findings suggest that micro-domains composed of sphingomyelin and the sterols could be the binding sites of Aß and the role of sphingomyelin in AD should receive much more attention. The artificial membranes provide a novel platform for the study on AD, and SPFS is a potential tool for detecting Aß-membrane interaction. Numerous investigations indicate that the ability of Aß to form fibrils is considerably dependent upon the levels of ß-sheet structure adopted by Aß. Membrane-mediated conformational transition of Aß has been demonstrated. In this study, we focus on the interaction of Aß and the membranes composed of POPC/SM/25-OH-Chol (2:1:1). The artificial membrane system was established by the methods as described above. Immunoassy based on a pair of monoclonal antibodies (mAbs) against different epitopes was employed to detect the orientation of the Aß at the model membranes. Kinetics of antibody-Aß binding was determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The attempt has also been made to probe the change in the conformation of Aß using SPFS combined with immunoassay. Melatonin was employed to induce the conformational change of Aß. The orientation and the conformational change of Aß are evaluated by analysing kinetic/affinity parameters. This work provides novel insight into the investigation on the structure of Aß at the membrane surface.
Resumo:
Die Alzheimer’sche Erkrankung (AD) ist die am häufigsten vorkommende Form der Demenz. Die Spaltung des APP scheint eine große Rolle in der Pathologie der Erkrankung zu spielen. APP kann auf zwei Wegen prozessiert werden. Dem amyloidogenen Weg, bei dem neben einem löslichen extrazellulären Fragment (sAPPβ) und der APP Intrazellulären Domäne (AICD) auch Aβ entsteht. Auf dem nicht-amyloidogenen Weg entsteht sAPPα, p3 und die AICD. Dem sAPPα werden neuroprotektiv Eigenschaften zugeschrieben. rnEs konnte gezeigt werden, dass sAPPα in jungen IMR90 Zellen, den durch proteasomalen Stress ausgelösten Anstieg der Bag3 und Hsp70 Proteinlevel senkt. Gleichzeitig konnte gezeigt werden, dass sAPPα die Zellviabilität nach proteasomalen Stress erhöht und weniger Aggresomen gebildet werden. Die Analyse der proteasomalen Aktivität zeigte, dass sAPPα die proteasomale Aktivität gestresster junger Zellen erhöhen kann. In alten IMR90 Zellen konnte keine Beeinflussung der Autophagie und der proteasomalen Aktivität festgestellt werden. Das ist ein Anhaltspunkt dafür, dass im Alter das Proteasom zu stark geschädigt ist, um durch sAPPα aktiviert zu werden. Das bei der amyloidogenen Prozessierung von APP entstehende sAPPβ zeigte eine ähnliche protektive Eigenschaft. rnInsgesamt konnte ein protektiver Einfluss von sAPPα und sAPPβ unter proteotoxischen Bedingungen in jungen und klonalen Zellen gezeigt werden, wodurch die Zellviabilität verbessert wird. rn
Resumo:
„ÜBEREXPRESSION UND CHARAKTERISIERUNG DES EXTRAZELLULÄREN TEILS DER HUMANEN alpha-SEKRETASE ADAM10“ ALEXANDRA LEPTICH Im Rahmen dieser Arbeit wurden zwei enzymatisch aktive lösliche Proteinvarianten der humanen alpha-Sekretase ADAM10 in Insektenzellen exprimiert, gereinigt und charakterisiert. Dabei entsprach eine der löslichen ADAM10-Varianten dem extrazellulären Bereich des Typ-I-Membranproteins, d.h. ihr fehlte die Transmembran- und cytoplasmatische Domäne. Die zweite Variante stimmt mit einer im menschlichen Gehirn auf mRNA-Ebene nachgewiesenen Splicevariante überein, die zusätzlich noch durch das Fehlen der Cystein-reichen Domäne gekennzeichnet ist. Die alpha-Sekretase ADAM10 spielt eine wichtige Rolle bei der nicht-amyloidogenen Prozessierung des Amyloid-Vorläufer-Proteins (APP). Dabei erfolgt dessen Spaltung innerhalb der beta-Amyloidsequenz, so dass die Produktion von Abeta-Peptiden und damit die Bildung von Amyloid-Plaques während der Alzheimer’schen Erkrankung verhindert wird. Nach der Expression der beiden löslichen ADAM10-Proteine in Insektenzellen erfolgte die Reinigung der prozessierten und damit reifen Enzymform der jeweiligen ADAM10-Proteinvariante mittels Lektin-Affinitätschromatographie. Die anschließende Charakterisierung der beiden löslichen ADAM10-Proteine erfolgte durch einen auf HPLC-Analyse basierenden Enzymtest. Dabei wurden verschiedene sich von der beta-Amyloid-Sequenz ableitenden Peptidsubstrate in vitro eingesetzt, die zum einen den Aminosäuren 11-28 der Abeta-Sequenz, zum anderen dem kompletten Abeta40-Peptid entsprachen und damit die charakteristische alpha-Sekretasespaltstelle des Amyloid-Vorläufer-Proteins enthielten. Des Weiteren kamen jeweils entsprechende Peptidsubstrate zum Einsatz, die an den Positionen 21 und 22 der Abeta- Peptidsequenz vorkommenden Mutationen trugen. Die gewählten Abeta-Substrate konnten durch die löslichen Varianten der alpha-Sekretase ADAM10 an der alpha-Sekretasestelle gespalten werden. Dabei konnte bei den Abeta11-28-Peptiden deutlich die in der Literatur beschriebene Abhängigkeit der Spaltung von der a-helicalen Struktur des Substrats beobachtet werden, während bei den längeren Abeta40-Peptide diesbezüglich kein Zusammenhang hergestellt werden konnte. Diese Ergebnisse deuten darauf hin, dass ADAM10 hauptsächlich als alpha-Sekretase wirkt, weniger als ein Abeta-degradierendes Enzym. Ferner konnte unter Verwendung entsprechender muriner und humaner Abeta-Peptide eine verstärkte Spaltung der murinen Substrate Abeta1-28 und Abeta1-40 durch den extrazellulären Teil von ADAM10 in vitro gezeigt werden. Dieser Versuch bestätigt die Annahme, dass es bei Nagetieren durch die Bevorzugung der nichtamyloidogenen Prozessierung von APP durch die alpha-Sekretase ADAM10 zu keiner Bildung von Amyloid-Plaques kommt. Ein Einfluss auf die Spaltung von membrangebundenem APP und damit der Bildung von neuroprotektivem sAPPalpha durch die löslichen ADAM10-Proteine konnte im Zellsystem nicht beobachtet werden. Vielmehr scheint hier die Membranverankerung von Enzym und Substrat eine wichtige Voraussetzung zu bilden. Des Weiteren konnten die löslichen ADAM10-Proteine durch ein für die Inhibierung von ADAM10 spezifische Hydroxamat-Derivat in ihrer enzymatischen Aktivität gehemmt werden. Die exprimierten ADAM10-Proteine weisen die charakteristischen Eigenschaften der alpha-Sekretase ADAM10 auf, wobei deutlich wurde, dass das Fehlen der Cystein-reichen Domäne keinen Einfluss auf die Fähigkeit der katalytischen Domäne zur Substrat- und Inhibitorbindung hatte. Auch die Stabilität des Enzyms wurde durch das Fehlen der Domäne nicht negativ beeinträchtigt. Eine wichtige Aufgabe stellt nun der Nachweis der löslichen ADAM10-Proteine sowie die Identifizierung ihrer potentiellen Substrate und deren Lokalisation in vivo dar.
Resumo:
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn
Resumo:
Die massive Bildung und Ablagerung von aggregiertem Amyloid Beta-Peptid im Gehirn wird allgemein als zentrales Ereignis im Rahmen des Neurodegenerationsprozesses der Alzheimer Demenz betrachtet. Als einer der ursächlichen Risikofaktoren gilt das Vorliegen des ε4-Allels des Apolipoprotein E. Die Alzheimer´sche Krankheit ist dabei in sehr vielfältige Weise mit Apolipoprotein E verknüpft. ApoE begünstigt isoformenabhängig Aβ-Ablagerungen, ApoE-Fragmente kommen im Gehirn und der Cerebrospinalflüssigkeit von Alzheimer Patienten vor und ApoE ist darüber hinaus als Cholesterintransportprotein über den zellulären Cholesterinstoffwechsel mit der Amyloidbildung verknüpft. Mit Hilfe einer Doppeltransfektion von ApoE und ADAM10 in HEK-Zellen und durch Studien mit Inhibitoren der ADAM-Familie an HepG-2-Zellen wurde in vitro gezeigt, dass ApoE nicht durch α-Sekretasen der ADAM-Familie gespalten wird. Weiterhin konnte bewiesen werden, dass ApoE in Astrogliomazellen keinen Einfluss auf die APP-Prozessierung ausübt. Durch in vitro Modulation des Cholesteringehaltes an Astrogliomazellen mit MβCD und seine Cholesterin-Komplexverbindungen ist gezeigt worden, dass die ApoE-Sekretion durch abnehmenden Cholesteringehalt gesenkt wird. Indem Statine alleine oder in Kombination mit Isoprenylierungssubstraten eingesetzt wurden ist der Beweis erbracht worden, dass Statine in vitro die ApoE-Sekretionsinhibition alleine durch Hemmung der Cholesterinbiosynthese bewirken. Bestätigt wurde dies weiterhin durch Experimente mit Isoprenylierungsinhibitoren. Aus dem Wirkmechanismus von Statinen auf die ApoE-Sekretionssenkung leitet sich womöglich der für bestimmte Statine berichtete neuroprotektive Effekt bei Morbus Alzheimer in retrospektiven Humanstudien ab, der sich durch reine Cholesterinsenkung nicht erklären lässt. Im Zusammenhang mit der Cholesterinhomöostase und dem gesteigerten 24(S)-Hydroxycholesterinspiegel bei Morbus Alzheimer, haben die Ergebnisse gezeigt, dass 24(S)-Hydroxycholesterin [24(S)-OH-chol] zur ApoE-Sekretions- und Expressionssteigerung führt. In dieser Arbeit konnte erstmals der Nachweis erbracht werden, dass der stimulatorische Effekt von 24(S)-OH-Chol durch gleichzeitige Lovastatingabe reduziert werden kann. Dies stellt einen möglichen Ansatz im Kampf gegen die Alzheimer Demenz dar. Weiterführend müssen diese Ergebnisse noch in vivo beispielsweise durch Versuche an ApoE-transgenen Mäusen bestätigt werden. Darüber hinaus könnte nach einer Statintherapie der ApoE-Gehalt in humaner, cerebrospinaler Flüssigkeit ermittelt werden.
Resumo:
LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.
Resumo:
According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.
Resumo:
Die Zinkendopeptidasen Meprin α und β sind Schlüsselkomponenten in patho(physiologischen) Prozessen wie Entzündung, Kollagenassemblierung und Angiogenese. Nach ihrer Entdeckung in murinen Bürstensaummembranen und humanen Darmepithelien, wurden weitere Expressionsorte identifiziert, z.B. Leukozyten, Krebszellen und die humane Haut. Tiermodelle, Zellkulturen und biochemische Analysen weisen auf Funktionen der Meprine in der Epithelialdifferenzierung, Zellmigration, Matrixmodellierung, Angiogenese, Bindegewebsausbildung und immunologische Prozesse hin. Dennoch sind ihre physiologischen Substrate weitgehend noch unbekannt. Massenspektrometrisch basierte Proteomics-Analysen enthüllten eine einzigartige Spaltspezifität für saure Aminosäurereste in der P1´ Position und identifizierten neue biologische Substratkandidaten. Unter den 269 extrazellulären Proteinen, die in einem Substratscreen identifiziert wurden, stellten sich das amyloid precursor protein (APP) and ADAM10 (a disintegrin and metalloprotease 10) als sehr vielversprechende Kandidaten heraus. Mehrere Schnittstellen innerhalb des APP Proteins, hervorgerufen durch verschiedenen Proteasen, haben unterschiedlichen Auswirkungen zur Folge. Die β-Sekretase BACE (β-site APP cleaving enzyme) prozessiert APP an einer Schnittstelle, welche als initialer Schritt in der Entwicklung der Alzheimer Erkrankung gilt. Toxische Aβ (Amyloid β)-Peptide werden in den extrazellulären Raum freigesetzt und aggregieren dort zu senilen Plaques. Membran verankertes Meprin β hat eine β-Sekretase Aktivität, die in einem Zellkultur-basierten System bestätigt werden konnte. Die proteolytische Effizienz von Meprin β wurde in FRET (Fluorescence Resonance Energy Transfer)-Analysen bestimmt und war um den Faktor 104 höher als die von BACE1. Weiterhin konnte gezeigt werden, dass Meprin β die ersten zwei Aminosäuren prozessiert und somit aminoterminal einen Glutamatrest freisetzt, welcher nachfolgend durch die Glutaminylzyklase in ein Pyroglutamat zykliert werden kann. Trunkierte Aβ-Peptide werden nur in Alzheimer Patienten generiert. Aufgrund einer erhöhten Hydrophobie weisen diese Peptide eine höhere Tendenz zur Aggregation auf und somit eine erhöhte Toxizität. Bis heute wurde keine Protease identifiziert, welche diese Schnittstelle prozessiert. Die Bildung der Meprin vermittelten N-terminalen APP Fragmenten wurde in vitro und in vivo detektiert. Diese N-APP Peptide hatten keine cytotoxischen Auswirkungen auf murine und humane Gehirnzellen, obwohl zuvor N-APP als Ligand für den death receptor (DR) 6 identifiziert wurde, der für axonale Degenerationsprozesse verantwortlich ist. rnIm nicht-amyloidogenen Weg prozessiert ADAM10 APP und entlässt die Ektodomäne von der Zellmembran. Wir konnten das ADAM10 Propeptid als Substrat von Meprin β identifizieren und in FRET Analysen, in vitro und in vivo zeigen, dass die Meprin vermittelte Prozessierung zu einer erhöhten ADAM10 Aktivität führt. Darüber hinaus wurde ADAM10 als Sheddase für Meprin β identifiziert. Shedding konnte durch Phorbol 12-myristate 13-acetate (PMA) oder durch das Ionophor A23187 hervorgerufen werden, sowie durch ADAM10 Inhibitoren blockiert werden. rnDiese Arbeit konnte somit ein komplexes proteolytisches Netwerk innerhalb der Neurophysiologie aufdecken, welches für die Entwicklung der Alzheimer Demenz wichtig sein kann.rn
Resumo:
ZUSAMMENFASSUNGIn den Gehirnen von Alzheimer-Patienten werden beta-Amyloid-Plaques gefunden, deren Hauptbestandteile die neurotoxischen beta-Amyloid-Peptide (A-beta) sind. Im Verlauf des nicht-amyloidogenen Wegs wird das Amyloid-Vorläuferproteins (APP) innerhalb der A-beta-Sequenz durch die alpha-Sekretase prozessiert, wobei das neuroprotektive APPs-alpha freigesetzt und die Entstehung der A-beta-Peptide verhindert wird. Die Aktivitätserhöhung der alpha-Sekretase ADAM10 könnte eine übermäßige Produktion der A-beta-Peptide abwenden.Zum Auffinden ADAM10-stimulierender Substanzen konnte ein Testsystem entwickelt werden, das auf der Fusion der 119 C-terminalen Aminosäurereste des Amyloid-Vorläuferproteins mit einem Reporterprotein beruht. Durch seine alkalische Phosphataseaktivität kann dieses Reporterprotein stellvertretend für das freigesetzte endogene APPs-alpha photometrisch im Zellkulturüberstand quantifiziert werden. Substanzen, die aktivierend auf die alpha-Sekretase ADAM10 wirken, können somit schnell und mit einer hohen Empfindlichkeit ermittelt werden.Die alpha-Sekretasen ADAM10 und TACE werden als inaktive Zymogene synthetisiert und besitzen eine Proprotein-Konvertasen-Erkennungssequenz zwischen der Prodomäne und der Metalloproteinase-Domäne. In dieser Arbeit konnte nachgewiesen werden, dass Proprotein-Konvertasen an der Prozessierung beider Zymogene beteiligt sind. ADAM10 und TACE wurden durch die Überexpression der Proprotein-Konvertasen PC7 und Furin in HEK293-Zellen in größerem Umfang prozessiert. Dies resultierte in einer erhöhten katalytischen Aktivität. Mutiertes ADAM10 ohne Proprotein-Konvertasen-Spaltstelle konnte nicht mehr in die katalytisch aktive Form überführt werden. Diese Ergebnisse eröffnen neue Ansätze zur Stimulierung des nicht-amyloidogenen Wegs.
Resumo:
ZusammenfassungMorbus Alzheimer ist eine progressive, neurodegenerative Erkrankung, die weltweit die häufigste Form der Demenz darstellt und im mittleren bis späten Lebensabschnitt auftritt. Die neuropathologischen Merkmale beinhalten das Auftreten von extrazellulären Ablagerungen aus fibrillogenem Aß42 Peptiden in senilen Plaques und intraneuronalen Akkumulationen von hyperphosphoryliertem Tau in sogenannten neurofibrillären Bündeln. Obwohl die meisten Alzheimer Fälle sporadisch und Alters-assoziiert auftreten, gibt es eine autosomal dominant vererbte Form (FAD; Familial Alzheimer Disease), die schon in einem frühen Lebensabschnitt (ab 28 Jahren) ausbrechen kann. Diese aggressive Alzheimer Form wird durch Mutationen im Amyloid-Precursor-Protein-Gen (APP) oder den Presenilin-Genen (PS-1 und PS-2) ausgelöst. Die Presenilin (PS) Proteine sind entscheidend an der Entstehung von Aß beteiligt. So erhöhen FAD-assoziierte Mutationen in PS-1 und PS-2 die Bildung von Aß42. Außerdem verhindern sowohl homozygote PS-1 Null-Mutationen (PS-1-/-) in transgenen Mäusen, als auch dominant negative PS-1 Mutationen in Kulturzellen die Ab Bildung. Diese Belege sprechen für die zur Zeit favorisierte Amyloid Hypothese, in der die toxische Wirkung des Aß-Peptides in der Entstehung der Alzheimer Erkrankung eine zentrale Rolle einnimmt. Die y-Sekretase ist eine Protease, deren Aktivität für die Entstehung von Ab aus dem Vorläuferprotein APP essentiell ist. Damit bildet sie einen möglichen Ansatzpunkt, um grundlegend in den Prozeß der Ab Bildung einzugreifen. Die y-Sekretase ist allerdings noch nicht identifiziert oder kloniert. Es gibt Hinweise, daß die Preseniline y-Sekretase Aktivität besitzen könnten. Diese Theorie ist bis heute jedoch nicht eindeutig belegt. In dieser Arbeit sollten die molekularen Mechanismen der Ab Entstehung und insbesondere die Beteiligung der Preseniline an diesem Prozeß untersucht werden. Dazu wurde zunächst die subzelluläre Verteilung der endogenen Preseniline analysiert. Es konnte erstmalig ein Unterschied in der subzellulären Verteilung zwischen PS-1 und PS-2 festgestellt werden. PS-1 war vorwiegend im ER lokalisiert, wogegen PS-2 stark im Golgi-Apparat angereichert war. Im zweiten Teil der Arbeit wurde nach möglichen Interaktionen der Preseniline mit C-terminalen APP Fragmenten gesucht, die die Substrate der y-Sekretase darstellen. Es konnte gezeigt werden, daß die Preseniline mit einem 21 kDa großen C-terminalen APP Fragment interagieren. Dabei band die Mutante-Form der Preseniline mehr C-terminales APP Fragment als die Wildtyp-Form. Weiterhin wurde ein zellfreies System zur indirekten Bestimmung der y-Sekretase Aktivität etabliert. Mit Hilfe dieses Systems wird es möglich, Inhibitoren der y-Sekretase zu identifizieren. Die Spezifität des zellfreien Testsystems konnte dadurch deutlich gemacht werden, daß das PS-1, das schon in Zellkultur als essentielle Proteinkomponente zur Entstehung von Aß beschrieben wurde, auch in diesem zellfreien y-Sekretase System notwendig war. Allgemeine Proteaseinhibitoren, die alle bekannten Proteasemechanismen abdeckten, zeigten keinen Einfluß auf die de novo Bildung von Aß. Es konnte festgestellt werden, daß neben der y-Sekretase als Aß produzierende Protease auch Aß abbauende Proteasen vorlagen. Das pH-Optimum der y-Sekretase wurde im neutralen Bereich festgestellt. Weiterhin konnte gezeigt werden, daß die y-Sekretase eine transmembrane oder zumindest membranassoziierte Protease ist, die keine cytosolischen Komponenten benötigt.
Resumo:
Die Herzinsuffizienz (HI) ist eine der häufigsten und teuersten medizinischen Indikationen in der heutigen Zeit. rnIn der vorliegenden Arbeit konnte zum ersten Mal die Topoisomerase 2b (Top2b) in Zusammenhang mit der Entstehung einer dilatativen Kardiomyopathie gebracht werden. rnIn einem speziellen Mausmodell war es möglich, die Top2b gewebsspezifisch und zeitspezifisch nur in Kardiomyozyten zu deletieren. Dies geschah mittels eines Tamoxifen-induzierten Cre-Rekombinase-Gendeletionsmodells. Phänotypisch zeigten die Top2b-deletierten Mäuse 8 Wochen nach der Tamoxifen-Gabe signifikant reduzierte kardiale Ejektionsfraktionen sowie erhöhte linksventrikuläre enddiastolische und endsystolische Volumina. Weder Schlagvolumen noch Körpergewicht waren verändert. Die natriuretischen Peptide ANP und BNP waren in den Top2b-deletierten Tieren ebenfalls signifikant erhöht. Zusätzlich zeigten sowohl elektronenmikroskopische Untersuchungen als auch klassische histologische Verfahren fibrotische Veränderungen und erhöhte Kollagenablagerungen in Top2b-deletierten Tieren. Begleitend dazu stiegen die mRNA-Expressionslevel von Col1a1, Col3a1, Tgfβ1 und Tgfβ2 in den deletierten Tieren 8 Wochen nach der Implementierung der Deletion signifikant an. rnIn einer genomweiten Hochdurchsatz-Sequenzierung waren bereits 2 Wochen nach Tamoxifen-Gabe 128 Gene mindestens 2-fach gegenüber der Kontrollgruppe differentiell exprimiert. Eine genauere Analyse der veränderten Genexpression ließ bereits 14 Tage nach Implementierung der Deletion kardiale Verschlechterungen vermuten. So waren neben dem atrialen natriuretischen Peptid ANP die beiden häufigsten Kollagenarten im Herzen, Col3a1 und Col1a1, hochreguliert. rnInteressanterweise beinhalteten die 37 herunterregulierten Gene 11 Transkriptionsfaktoren. Da der Top2b in den letzten Jahren eine immer stärker werdende Bedeutung in der Transkription zugesprochen wird, sollte mittels Chromatin-Immunpräzipitation ein direkter Zusammenhang zwischen der Top2b-Deletion und der Herunterregulierung der 11 Transkriptionsfaktoren sowie die Bindung der Top2b an Promotoren ausgewählter, differentiell-exprimierter Gene untersucht werden. Generell konnte keine vermehrte Bindung von Top2b an Promotorbereiche gezeigt werden, was aber nicht dem generellen Fehlen einer Bindung gleichkommen muss. Vielmehr gab es methodische Schwierigkeiten, weshalb die Bedeutung der Top2b in der Transkription im Rahmen der vorliegenden Arbeit nicht ausreichend geklärt werden konnte.rnEine Kardiomyozyten-spezifische Top2b-Deletion mündete 8 Wochen nach Tamoxifen-Gabe in eine dilatative Kardiomyopathie. Zum gegenwärtigen Zeitpunkt sind keine klaren Aussagen zum zugrundeliegenden Mechanismus der entstehenden Herzschädigung in Folge einer Top2b-Deletion zu treffen. Es gibt jedoch Hinweise darauf, dass der Tumorsuppressormarker p53 eine wichtige Rolle in der Entstehung der dilatativen Kardiomyopathie spielen könnte. So konnte 8 Wochen nach der Top2b-Deletion mittels Chromatin-Immunpräzipitation eine erhöhte Bindung von p53 an Promotorregionen von Col1a1, Tgfβ2 und Mmp2 detektiert werden. Die Bedeutung dieser Bindung, und ob aufgrund dessen die Entstehung der Fibrose erklärt werden könnte, ist zum jetzigen Zeitpunkt unklar.rn