3 resultados para Almost Convergence

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allgemein erlaubt adaptive Gitterverfeinerung eine Steigerung der Effizienz numerischer Simulationen ohne dabei die Genauigkeit des Ergebnisses signifikant zu verschlechtern. Es ist jedoch noch nicht erforscht, in welchen Bereichen des Rechengebietes die räumliche Auflösung tatsächlich vergröbert werden kann, ohne die Genauigkeit des Ergebnisses signifikant zu beeinflussen. Diese Frage wird hier für ein konkretes Beispiel von trockener atmosphärischer Konvektion untersucht, nämlich der Simulation von warmen Luftblasen. Zu diesem Zweck wird ein neuartiges numerisches Modell entwickelt, das auf diese spezielle Anwendung ausgerichtet ist. Die kompressiblen Euler-Gleichungen werden mit einer unstetigen Galerkin Methode gelöst. Die Zeitintegration geschieht mit einer semi-implizite Methode und die dynamische Adaptivität verwendet raumfüllende Kurven mit Hilfe der Funktionsbibliothek AMATOS. Das numerische Modell wird validiert mit Hilfe einer Konvergenzstudie und fünf Standard-Testfällen. Eine Methode zum Vergleich der Genauigkeit von Simulationen mit verschiedenen Verfeinerungsgebieten wird eingeführt, die ohne das Vorhandensein einer exakten Lösung auskommt. Im Wesentlichen geschieht dies durch den Vergleich von Eigenschaften der Lösung, die stark von der verwendeten räumlichen Auflösung abhängen. Im Fall einer aufsteigenden Warmluftblase ist der zusätzliche numerische Fehler durch die Verwendung der Adaptivität kleiner als 1% des gesamten numerischen Fehlers, wenn die adaptive Simulation mehr als 50% der Elemente einer uniformen hoch-aufgelösten Simulation verwendet. Entsprechend ist die adaptive Simulation fast doppelt so schnell wie die uniforme Simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic differential equation with interaction. The social interaction is contained in the drift term of the SDE. We consider a global aggregation force and a short-range repulsion force. The repulsion range and strength gets rescaled with the number of animals N. We show that for N tending to infinity stochastic fluctuations disappear and a smoothed version of the empirical process converges uniformly towards the solution of a nonlinear, nonlocal partial differential equation of advection-reaction-diffusion type. The rescaling of the repulsion in the individual-based model implies that the corresponding term in the limit equation is local while the aggregation term is non-local. Moreover, we discuss the effect of a predator on the system and derive an analogous convergence result. The predator acts as an repulsive force. Different laws of motion for the predator are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.