3 resultados para Alcuin, 735-804.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall polymer (SCWP) was recorded by SPR. The optical thicknesses and surface densities for different protein layers were calculated. In DNA hybridization tests performed in order to discriminate different mismatches, recombinant S-layer-streptavidin fusion protein matrices showed their potential for new microarrays. Moreover, SCWPs coated gold chips, covered with a controlled and oriented assembly of S-layer fusion proteins, represent an even more sensitive fluorescence testing platform. Additionally, S-layer fusion proteins as the matrix for LHCII immobilization strongly demonstrate superiority over routine approaches, proving the possibility of utilizing them as a new strategy for biomolecular coupling. In the study of the SPFS hCG immunoassay, the biophysical and immunological characteristics of this glycoprotein hormone were presented first. After the investigation of the effect of the biotin thiol dilution on the coupling efficiently, the interfacial binding model including the appropriate binary SAM structure and the versatile streptavidin-biotin interaction was chosen as the basic supramolecular architecture for the fabrication of a SPFS-based immunoassay. Next, the affinity characteristics between different antibodies and hCG were measured via an equilibrium binding analysis, which is the first example for the titration of such a high affinity interaction by SPFS. The results agree very well with the constants derived from the literature. Finally, a sandwich assay and a competitive assay were selected as templates for SPFS-based hCG detection, and an excellent LOD of 0.15 mIU/ml was attained via the “one step” sandwich method. Such high sensitivity not only fulfills clinical requirements, but is also better than most other biosensors. Fully understanding how LHCII complexes transfer the sunlight energy directionally and efficiently to the reaction center is potentially useful for constructing biomimetic devices as solar cells. After the introduction of the structural and the spectroscopic features of LHCII, different surface immobilization strategies of LHCII were summarized next. Among them the strategy based on the His-tag and the immobilized metal (ion) affinity chromatography (IMAC) technique were of great interest and resulted in different kinds of home-fabricated His-tag chelating chips. Their substantial protein coupling capacity, maintenance of high biological activity and a remarkably repeatable binding ability on the same chip after regeneration was demonstrated. Moreover, different parameters related to the stability of surface coupled reconstituted complexes, including sucrose, detergent, lipid, oligomerization, temperature and circulation rate, were evaluated in order to standardize the most effective immobilization conditions. In addition, partial lipid bilayers obtained from LHCII contained proteo-liposomes fusion on the surface were observed by the QCM technique. Finally, the inter-complex energy transfer between neighboring LHCIIs on a gold protected silver surface by excitation with a blue laser (λ = 473nm) was recorded for the first time, and the factors influencing the energy transfer efficiency were evaluated.
Resumo:
In this thesis, we have presented the preparation of highly crosslinked spherical photoreactive colloidal particles of radius about 10 nm based on the monomer trimethoxysilane. These particles are labeled chemically with two different dye systems (coumarin, cinnamate) which are known to show reversible photodimerization. By analyzing the change in particle size upon UV irradiation with dynamic light scattering, we could demonstrate that the partially reversible photoreaction in principle can be utilized to control increase and decrease of colloidal clusters. Here, selection of the appropriate wavelengths during the irradiation employing suitable optical filters proved to be very important. Next, we showed how photocrosslinking of our nanoparticles within the micrometer-sized thin oil shell of water-oil-water emulsion droplets leads to a new species of optically addressable microcontainers. The inner water droplet of these emulsions may contain drugs, dyes or other water-soluble components, leading to filled containers. Thickness, mechanical stability and light resistance of the container walls can be controlled in a simple way by the amount and adjustable photoreactivity (= No. of labels/particle) of the nanoparticles. Importantly, the chemical bonds between the nanoparticles constituting the microcapsule shell can be cleaved photochemically by irradiation with uv light. An additional major advantage is that filling our microcapsules with water-soluble substrate molecules is extremely simple using a solution of the guest molecules as inner water phase of the W/O/W-emulsion. This optically controlled destruction of our microcontainers thus opens up a pathway to controlled release of the enclosed components as illustrated by the example of enclosed cyclodextrin molecules.
Resumo:
Pyrene derivatives as donors and acceptorsrnrnAlmost 200 years have passed since pyrene was first discovered, and to this day it garners unbroken interest by chemists around the world. One of the most fascinating areas of pyrene chemistry is its selective functionalization, since it is still currently a challenge to specifically functionalize different positions on the molecule.[1]rnIn this work, two new patterns of pyrene substitution have been developed. Under suitable conditions, a fourfold bromination of 4,5,9,10 tetramethoxypyrene is possible to yield eightfold functionalized pyrenes. Based on these molecules a novel series of 1,3,4,5,6,8,9,10-substituted pyrene derivatives was achieved. Synthetic approaches to a non-quinoidal, strong pyrene-4,5,9,10-tetraone based acceptor have been discussed. It emerged that the chosen synthetic approach is suitable for intermediate acceptors, yet it failed very electron deficient pyrene derivatives. Donors based on 4,5,9,10-tetramethoxypyrene (2,7- and 1,3,6,8-substitued) have been prepared and studied as CT complexes. In the SFB/TR 49 these complexes were analyzed in the solid state. For the first time charge transfer in a non-TTF CT-complex was studied by HAXPES and NEXAFS.rnBased on the works of ZÖPHEL et al.[2] it was possible to obtain an asymmetric 4,9,10 substituted pyrene derivative. This was used as a building block to prepare a non-planar acceptor molecule as well as electron-rich rylene-type molecules. rnFinally, two separate series of molecules intended as emitters for OLEDs were presented. Thermally activated delayed fluorescence (TADF) in OLEDs attracted significant academic interest as it is considered a promising approach to improve the efficiency of fluorescent OLEDs.[3] Our molecules were designed to have a deep blue emission spectrum and a minimal singlet triplet energy gap (∆ES1->T1) while retaining a high fluorescence quantum yield ϕPL. The initial OD series has a small ∆ES1->T1, yet had an insufficient ϕPL for the use in OLEDs. The Py series emitters, in contrast, combine both desired properties and were successfully implemented in efficient OLED devices.rn[1]. T. M. Figueira-Duarte and K. Müllen, Chem. Rev., 2011, 111, 7260-7314.rn[2]. L. Zöphel, V. Enkelmann and K. Müllen, Org. Lett., 2013, 15, 804-807.rn[3]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238.