4 resultados para Advection
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Poröse Medien spielen in der Hydrosphäre eine wesentliche Rolle bei der Strömung und beim Transport von Stoffen. In diesem Raum finden komplexe Prozesse statt: Advektion, Kon-vektion, Diffusion, hydromechanische Dispersion, Sorption, Komplexierung, Ionenaustausch und Abbau. Die strömungsmechanischen- und die Transportverhältnisse in porösen Medien werden direkt durch die Geometrie des Porenraumes selbst und durch die Eigenschaften der transportierten (oder strömenden) Medien bestimmt. In der Praxis wird eine Vielzahl von empirischen Modellen verwendet, die die Eigenschaften des porösen Mediums in repräsentativen Elementarvolumen wiedergeben. Die Ermittlung der in empirischen Modellen verwendeten Materialparameter erfolgt über Labor- oder Feldbestimmungsmethoden. Im Rahmen dieser Arbeit wurde das Computer-modell PoreFlow entwickelt, welches die hydraulischen Eigenschaften eines korngestützten porösen Mediums aus der mikroskopischen Modellierung des Fluidflusses und Transportes ableitet. Das poröse Modellmedium wird durch ein dreidimensionales Kugelpackungsmodell, zusam-mengesetzt aus einer beliebigen Kornverteilung, dargestellt. Im Modellporenraum wird die Strömung eines Fluids basierend auf einer stationären Lösung der Navier-Stokes-Gleichung simuliert. Die Ergebnisse der Modellsimulationen an verschiedenen Modellmedien werden mit den Ergebnissen von Säulenversuchen verglichen. Es zeigt sich eine deutliche Abhängigkeit der Strömungs- und Transportparameter von der Porenraumgeometrie sowohl in den Modell-simulationen als auch in den Säulenexperimenten.
Resumo:
This work focused mainly on two aspects of kinetics of phase separation in binary mixtures. In the first part, we studied the interplay of hydrodynamics and the phase separation of binary mixtures. A considerably flat container (a laterally extended geometry), at an aspect ratio of 14:1 (diameter: height) was chosen, so that any hydrodynamic instabilities, if they arise, could be tracked. Two binary mixtures were studied. One was a mixture of methanol and hexane, doped with 5% ethanol, which phase separated under cooling. The second was a mixture of butoxyethanol and water, doped with 2% decane, which phase separated under heating. The dopants were added to bring down the phase transition temperature around room temperature.rnrnAlthough much work has been done already on classical hydrodynamic instabilities, not much has been done in the understanding of the coupling between phase separation and hydrodynamic instabilities. This work aimed at understanding the influence of phase separation in initiating any hydrodynamic instability, and also vice versa. Another aim was to understand the influence of the applied temperature protocol on the emergence of patterns characteristic to hydrodynamic instabilities. rnrnOn slowly cooling the system continuously, at specific cooling rates, patterns were observed in the first mixture, at the start of phase separation. They resembled the patterns observed in classical Rayleigh-Bénard instability, which arises when a liquid continuously is heated from below. To suppress this classical convection, the cooling setup was tuned such that the lower side of the sample always remained cooler by a few millikelvins, relative to the top. We found that the nature of patterns changed with different cooling rates, with stable patterns appearing for a specific cooling rate (1K/h). On the basis of the cooling protocol, we estimated a modified Rayleigh number for our system. We found that the estimated modified Rayleigh number is near the critical value for instability, for cooling rates between 0.5K/h and 1K/h. This is consistent with our experimental findings. rnrnThe origin of the patterns, in spite of the lower side being relatively colder with respect to the top, points to two possible reasons. 1) During phase separation droplets of either phases are formed, which releases a latent heat. Our microcalorimetry measurements show that the rise in temperature during the first phase separation is in the order of 10-20millikelvins, which in some cases is enough to reverse the applied temperature bias. Thus phase separation in itself initiates a hydrodynamic instability. 2) The second reason comes from the cooling protocol itself. The sample was cooled from above and below. At sufficiently high cooling rates, there are situations where the interior of the sample is relatively hotter than both top and bottom of the sample. This is sufficient to create an instability within the cell. Our experiments at higher cooling rates (5K/h and above) show complex patterns, which hints that there is enough convection even before phase separation occurs. Infact, theoretical work done by Dr.Hayase show that patterns could arise in a system without latent heat, with symmetrical cooling from top and bottom. The simulations also show that the patterns do not span the entire height of the sample cell. This is again consistent with the cell sizes measured in our experiment.rnrnThe second mixture also showed patterns at specific heating rates, when it was continuously heated inducing phase separation. In this case though, the sample was turbid for a long time until patterns appeared. A meniscus was most probably formed before the patterns emerged. We attribute the reason of patterns in this case to Marangoni convection, which is present in systems with an interface, where local differences in surface tension give rise to an instability. Our estimates for the Rayleigh number also show a significantly lower number than that's required for RB-type instability.rnrnIn the first part of the work, therefore, we identify two different kinds of hydrodynamic instabilities in two different mixtures. Both are observed during, or after the first phase separation. Our patterns compare with the classical convection patterns, but here the origins are from phase separation and the cooling protocol.rnrnIn the second part of the work, we focused on the kinetics of phase separation in a polymer solution (polystyrene and methylcyclohexane), which is cooled continuously far down into the two phase region. Oscillations in turbidity, denoting material exchange between the phases are seen. Three processes contribute to the phase separation: Nucleation of droplets, their growth and coalescence, and their subsequent sedimentation. Experiments in low molecular binary mixtures had led to models of oscillation [43] which considered sedimentation time scales much faster than the time scales of nucleation and growth. The size and shape of the sample therefore did not matter in such situations. The oscillations in turbidity were volume-dominated. The present work aimed at understanding the influence of sedimentation time scales for polymer mixtures. Three heights of the sample with same composition were studied side by side. We found that periods increased with the sample height, thus showing that sedimentation time determines the period of oscillations in the polymer solutions. We experimented with different cooling rates and different compositions of the mixture, and we found that periods are still determined by the sample height, and therefore by sedimentation time. rnrnWe also see that turbidity emerges in two ways; either from the interface, or throughout the sample. We suggest that oscillations starting from the interface are due to satellite droplets that are formed on droplet coalescence at the interface. These satellite droplets are then advected to the top of the sample, and they grow, coalesce and sediment. This type of an oscillation wouldn't require the system to pass the energy barrier required for homogenous nucleation throughout the sample. This mechanism would work best in sample where the droplets could be effectively advected throughout the sample. In our experiments, we see more interface dominated oscillations in the smaller cells and lower cooling rates, where droplet advection is favourable. In larger samples and higher cooling rates, we mostly see that the whole sample becomes turbid homogenously, which requires the system to pass the energy barrier for homogenous nucleation.rnrnOscillations, in principle, occur since the system needs to pass an energy barrier for nucleation. The height of the barrier decreases with increasing supersaturation, which in turn is from the temperature ramp applied. This gives rise to a period where the system is clear, in between the turbid periods. At certain specific cooling rates, the system can follow a path such that the start of a turbid period coincides with the vanishing of the last turbid period, thus eliminating the clear periods. This means suppressions of oscillations altogether. In fact we experimentally present a case where, at a certain cooling rate, oscillations indeed vanish. rnrnThus we find through this work that the kinetics of phase separation in polymer solution is different from that of a low molecular system; sedimentation time scales become relevant, and therefore so does the shape and size of the sample. The role of interface in initiating turbid periods also become much more prominent in this system compared to that in low molecular mixtures.rnrnIn summary, some fundamental properties in the kinetics of phase separation in binary mixtures were studied. While the first part of the work described the close interplay of the first phase separation with hydrodynamic instabilities, the second part investigated the nature and determining factors of oscillations, when the system was cooled deep into the two phase region. Both cases show how the geometry of the cell can affect the kinetics of phase separation. This study leads to further fundamental understandings of the factors contributing to the kinetics of phase separation, and to the understandings of what can be controlled and tuned in practical cases. rn
Resumo:
We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic differential equation with interaction. The social interaction is contained in the drift term of the SDE. We consider a global aggregation force and a short-range repulsion force. The repulsion range and strength gets rescaled with the number of animals N. We show that for N tending to infinity stochastic fluctuations disappear and a smoothed version of the empirical process converges uniformly towards the solution of a nonlinear, nonlocal partial differential equation of advection-reaction-diffusion type. The rescaling of the repulsion in the individual-based model implies that the corresponding term in the limit equation is local while the aggregation term is non-local. Moreover, we discuss the effect of a predator on the system and derive an analogous convergence result. The predator acts as an repulsive force. Different laws of motion for the predator are considered.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.