4 resultados para Activation C-C bond
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das Stannylen SnHyp2 (Hyp = Si(SiMe3)3) reagiert mit den Übergangsmetallhydrid-Komplexen Cp2MH2 (Cp = C5H5, M = Mo, W) in einer alpha-Additionsreaktion zu Cp2MSn(H)Hyp2. Ferner bilden sich unter Abspaltung von HSi(SiMe3)3 auch vierkernige Verbindungen der Form [Cp2MSn(H)Hyp]2, welche für M = Mo röntgendiffraktometrisch nachgewiesen wurden. Erhöht man den sterischen Anspruch der Silylreste des Stannylens, so nimmt die Tendenz der Adduktbildung ab, so dass nur die vierkernigen Komplexe nachweisbar sind. Im Fall für SnSit2 (Sit = Si(SiMe3)2SiMe2tBu) konnten sogar Stereoisomere der vierkernigen Verbindungen [Cp2MoSn(H)Sit]2 nachgewiesen werden. Im Gegensatz dazu reagiert das Plumbylen PbHyp2 mit Cp2MoH2 in einer Substitutionsreaktion zu dem nachgewiesenen Cp2Mo(H)Hyp. Bei größer werdendem Silylrest werden andere Reaktionsabläufe bevorzugt. Auf dem Forschungsgebiet der Ein-Elektronen-Reduktion von Halogenstannanen und -plumbanen XER2R´ (X = Halogen; E = Sn, Pb; R = Silylrest; R = Aryl- / Alkylrest) mit dem 19-Elektronen-Komplex Decamethylcobaltocen CoCp*2 (Cp* = C5Me5) konnten Unterschiede zwischen den Verbindungen des Zinns und des Bleis festgestellt werden: Bei der Reduktion von Halogenstannanen fallen die erwarteten Decamethylcobaltocenium-Halogenide [CoCp*2]X aus und ESR-Messungen bestätigen die Anwesenheit von Stannylradikalen, während bei der Reduktion von hypersilylierten Halogenplumbanen unterschiedliche Folgeprodukte entstehen und Plumbylradikale via ESR-Spektroskopie nicht feststellbar sind. Bei alkylhaltigen Halogenplumbanen XPbHyp2R (R = Alkyl) findet eine Spaltung der Pb-C-Bindung statt und es bilden sich Plumbate der Form [CoCp*2][PbHyp2X], während die Reduktion von einem arylhaltigen Halogenplumban IPbHyp2Ph (Ph = Phenyl) das erwartete Decamethylcobaltocenium-Salze ergibt.
Resumo:
Der N-methyl-D-aspartat-Rezeptor (NMDA), als Vertreter ionotroper Glutamat-Rezeptoren, ist essentiell für physiologische Lern- und Gedächtnisvorgänge und eine krankhafte Überaktivierung wird als potentielle Ursache für eine Reihe von akuten und chronischen neurodegenerativen Erkrankungen angesehen. Hierbei sind für die akuten Erkrankungen vor allem der Schlaganfall und für die chronischen Erkrankungen Morbus Parkinson sowie die Alzheimer´sche Demenz zu nennen. Durch seine einzigartige spannungsabhängige Mg2+-Blockade und der Notwendigkeit der gleichzeitigen Anwesenheit der endogenen Liganden Glutamat und Glycin zur Rezeptoraktivierung, stellt dieser Rezeptorkomplex daher ein sehr interessantes molekulares Target dar. NMDA-Rezeptor-Antagonisten der Glycin-Bindungsstelle und der verschiedenen allosterischen Bindungsstellen könnten als Neuroprotektiva bei den verschiedenen Krankheiten eine symptomatische Verbesserung bewirken und zur Therapie eingesetzt werden. Eine visuelle Darstellung des Rezeptors im Rahmen von Vorsorgeuntersuchungen ist jedoch derzeit nicht möglich. Zur Visualisierung dieser Prozesse mittels der Positronen-Emissions-Tomographie (PET) wurden basierend auf einer Hydantoin-substituierten Indol-2-carbonsäure als Leitstruktur, im Rahmen dieser Arbeit Fluorethoxy- und Methoxy-substituierte Derivate dargestellt und in pharmazeutischen und radiopharmazeutischen Studien evaluiert. Dazu wurde die Affinität und Spezifität zum Rezeptor in einem [3H]MDL-105,519 Rezeptorbindungsassay und die Lipophilie als Parameter für die Hirngängigkeit ermittelt. Anhand dieser Resultate wurden geeignete Markierungsvorläufer synthetisiert, welche eine phenolische Hydroxylfunktion besitzen und eine radioaktive Markierung mit den sekundären Markierungsvorläufern 2-[18F]Fluorethyltosylat ([18F]FETos) und [11C]Methyliodid ([11C]CH3I) ermöglichen. Unter Verwendung von 4,6-Dichlor-3-((3-(4-hydroxyphenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäure wurde in einer Einstufenreaktion mit [18F]FETos die Zielverbindung 4,6-Dichlor-3-((3-(4-(2-[18F]fluorethoxy)phenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäure in radiochemischen Ausbeuten von 6 % erhalten. Daher wurde eine alternative Markierung des Ethylester-geschützten Derivates 4,6-Dichlor-3-((3-(4-hydroxyphenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäureethylester in einer Zweistufensynthese mit [18F]FETos und [11C]CH3I untersucht. Unter Verwendung dieser Strategie wurden unter optimierten Bedingungen 4,6-Dichlor-3-((3-4-(2-[18F]fluorethoxy)phenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäureethylester und 4,6-Dichlor-3-((3-(4-[11C]methoxy-phenyl)-2,4-dioxoimidazolidin-1-yl)-methyl)-indol-2-carbonsäureethylester in radiochemischen Ausbeuten von 27 – 38 % erhalten. Die anschließende Entfernung der Schutzgruppe führte unter Bildung von Neben- und Zersetzungsreaktionen zu 4,6-Dichlor-3-((3-(4-(2-[18F]fluorethoxy)-phenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäure und 4,6-Dichlor-3-((3-(4-[11C]methoxyphenyl)-2,4-dioxoimidazolidin-1-yl)methyl)-indol-2-carbonsäure in radiochemischen Gesamtausbeuten von 5 – 7 %. Die Überprüfung des biochemischen Konzepts in vivo durch µ-PET-Studien und durch autoradiographische Experimente an Rattenhirnschnitten, deuten auf eine niedrige in vivo-Aktivität hin, welche sich auf eine nicht ausreichende Passage der Blut-Hirn-Schranke zurückführen lässt.
Resumo:
Stress-aktivierte-Protein-Kinasen (c-Jun-N-terminal kinases) SAPK/JNK werden sehr schnell nach Exposition von Zellen mit verschiedensten Noxen, wie beispielsweise Genotoxinen, aktiviert. Sie sind allerdings noch nicht als Teil der DNA-Schadensantwort etabliert. In dieser Arbeit sollte gezeigt werden, das SAPK/JNK einen wichtigen Teil innerhalb der DNA-Schadensantwort spielen. Aus diesem Grund wurde zu frühen (z.B.: 4 h) als auch zu späten Zeiten (z.B.: 24 h) die Bildung von DNA-Addukten nach Cisplatin Exposition untersucht und überprüft, ob diese mit dem Aktivierungsstatus der SAPK/JNK nach Cisplatinbehandlung korreliert. Menschliche Fibroblasten, die einen Defekt in der Transkription gekoppelten Nukleotid-Exzisionsreparatur (TC-NER) aufwiesen, wie beispielsweise CSB-Zellen (Cockayne Syndrom B) oder XPA-Zellen (Xeroderma Pigmentosum A), sind charakterisiert durch einen erhöhten Phosphorylierungsstatus der SAPK/JNK, 16 h nach Cisplatingabe, im Vergleich zu normalen Wildtyp-Fibroblasten. Die nach Cisplatin Exposition beobachtete Aktivierung der SAPK/JNK ist quantitativ jedoch nicht vergleichbar mit dem Level an gebildeten Cisplatin-DNA-Addukten, wie in den Southwestern- und Massenspektrometrischen Untersuchungen gezeigt werden konnte. Es konnten jedoch Parallelen zwischen der Aktivierung der SAPK/JNK, sowie den gezeigten γ-H2AX-Foci als auch der Aktivierung von Check-Point Kinasen gefunden werden. Dies lässt darauf schließen, dass DNA-Doppelstrangbrüche (DSB) an der späten Aktivierung des SAPK/JNK Signalweges beteiligt sind. Dementsprechend lässt sich ebenfalls in Zellen, die einen Defekt in der Reparatur von Doppelstrangsbrüchen aufweisen, wie beispielsweise DNA-PKcs Zellen, eine erhöhte, durch Cisplatin hervorgerufene späte Phosphorylierung der SAPK/JNK als auch eine vermehrte γ-H2AX-Foci Bildung und Check-Point Kinasen Aktivierung nachweisen. Vergleichend dazu zeigten Zellen mit einem Defekt in ATM (Ataxia telegiectasia mutated protein) oder XPC keine erhöhte Phosphorylierung zu späten Zeiten nach Cisplatin Behandlung. Weiterhin bleibt festzuhalten, dass die späte, durch Cisplatin hervorgerufene Schadensantwort unabhängig von p53, ER-Stress oder MKP-1 ist. Die SAPK/JNK Aktivierung nach Cisplatin Exposition erfordert funktionsfähige Rho-GTPasen und kann durch pharmakologische Hemmung der Tyrosin-Kinasen und durch N-Acetylcystein gehemmt werden. Es lässt sich zusammenfassend sagen, dass die durch Cisplatin induzierte späte SAPK/JNK Aktivierung durch die Formation von DSB initiiert wird und XPC, Rho-Proteine sowie Tyrosin Kinasen an der Signalweiterleitung beteiligt sind.
Resumo:
Eine verstärkte Transkription von NADPH-Oxidasen (Nox) wird mit der Entstehung von atherosklerotischer Veränderungen in Verbindung gebracht. Die Arbeit unserer Gruppe zeigte, dass die Aktivität der Proteinkinase C (PKC) zu einer Nox4-Hochregulation führt, der dominanten NOX Isoform in endothelialen Zellen. Die vorliegende Arbeit zielte auf die Aufdeckung der dowm-stream gelegenen Mechanismen. Die Behandlung von humanen EA.hy 926-Zellen mit dem PKC Aktivator Phorbol-12-Myristat-13-Acetat (PMA) für 48 h führte in eine signifikante Nox4-mRNA-Hochregulation, welche mittels PKC-Inhibitoren oder PKC alpha siRNA abgewendet werden konnte. PMA führte zu einer andauernden Aktivierung der MAP-Kinase Erk1/2. Die PMA vermittelte Nox4-Expression konnte durch Erk1/2-Inhibitoren oder durch Erk1/2-Knock-down geblockt werden. Down-stream konnte die Involvierung der Erk1/2-Substarte Elk-1 und c-Fos mittels siRNA-Experimente gezeigt werden. Darüber hinaus blockte die Inhibierung der Histondeacetylasen (HDACs) mit Scriptaid oder durch HDAC3-Knock-down mittels siRNA die PMA-induzierte Nox4-Expression in EA.hy 926-Zellen, weswegen eine Rolle für HADC3 in der Regulation der Nox4-Expression angezeigt wurde. Abschließend reduzierte ein Knock-down von p53 (siRNA) deutlich die basale Expression von Nox4, hatte aber nur einen kleinen Effekt auf die PMA-induzierte Nox4-Expression. Zusammenfassend zeigen die Daten der vorliegenden Arbeit, dass in einer PKC alpha induzierten Nox4-mRNA-Hochregulation Erk1/2, Elk-1, cFos und HDAC3 involviert sind.