3 resultados para ATOM

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme. Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-Parameter-Gruppe auf eine Menge von Observablen A gegeben: Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H. Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleichgewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und Pillet, eine Darstellung von A zu konstruieren. Die Vektoren in dieser Darstellung definieren die Zustände, die Zeitentwicklung wird mit Hilfe des Standard Liouville-Operators L beschrieben. In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet: - die Konstuktion einer Darstellung - die Selbstadjungiertheit des Standard Liouville-Operators - die Existenz eines Gleichgewichtszustandes in dieser Darstellung - der Limes des physikalischen Systems für große Zeiten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I present the realization of a fiber-optical interface using optically trapped cesium atoms, which is an efficient tool for coupling light and atoms. The basic principle of the presented scheme relies on the trapping of neutral cesium atoms in a two-color evanescent field surrounding a nanofiber. The strong confinement of the fiber guided light, which also protrudes outside the nanofiber, provides strong confinement of the atoms as well as efficient coupling to near-resonant light propagating through the fiber. In chapter 1, the necessary physical and mathematical background describing the propagation of light in an optical fiber is presented. The exact solution of Maxwell’s equations allows us to model fiber-guided light fields which give rise to the trapping potentials and the atom-light coupling in the close vicinity of a nanofiber. Chapter 2 gives the theoretical background of light-atom interaction. A quantum mechanical model of the light-induced shifts of the relevant atomic levels is reviewed, which allows us to quantify the perturbation of the atomic states due to the presence of the trapping light-fields. The experimental realization of the fiber-based atom trap is the focus of chapter 3. Here, I analyze the properties of the fiber-based trap in terms of the confinement of the atoms and the impact of several heating mechanisms. Furthermore, I demonstrate the transportation of the trapped atoms, as a first step towards a deterministic delivery of individual atoms. In chapter 4, I present the successful interfacing of the trapped atomic ensemble and fiber-guided light. Three different approaches are discussed, i.e., those involving the measurement of either near-resonant scattering in absorption or the emission into the guided mode of the nanofiber. In the analysis of the spectroscopic properties of the trapped ensemble we find good agreement with the prediction of theoretical model discussed in chapter 2. In addition, I introduce a non-destructive scheme for the interrogation of the atoms states, which is sensitive to phase shifts of far-detuned fiber-guided light interacting with the trapped atoms. The inherent birefringence in our system, induced by the atoms, changes the state of polarization of the probe light and can be thus detected via a Stokes vector measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.