41 resultados para ATLAS, particle physics, SM, ZZ, aTGC
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Measurements of the self coupling between bosons are important to test the electroweak sector of the Standard Model (SM). The production of pairs of Z bosons through the s-channel is forbidden in the SM. The presence of physics, beyond the SM, could lead to a deviation of the expected production cross section of pairs of Z bosons due to the so called anomalous Triple Gauge Couplings (aTGC). Proton-proton data collisions at the Large Hadron Collider (LHC) recorded by the ATLAS detector at a center of mass energy of 8 TeV were analyzed corresponding to an integrated luminosity of 20.3 fb-1. Pairs of Z bosons decaying into two electron-positron pairs are searched for in the data sample. The effect of the inclusion of detector regions corresponding to high values of the pseudorapidity was studied to enlarge the phase space available for the measurement of the ZZ production. The number of ZZ candidates was determined and the ZZ production cross section was measured to be: rn7.31.0(Stat.)0.4(Sys.)0.2(lumi.)pb, which is consistent with the SM expectation value of 7.20.3pb. Limits on the aTGCs were derived using the observed yield, which are twice as stringent as previous limits obtained by ATLAS at a center of mass energy of 7 TeV.
Resumo:
The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identied as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no signicant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Condence Level (C.L.).
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend besttigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefgt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information ber eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren ber M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunchstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgefhrt. Ein Problem der spektralenTripel stellt ihre Beschrnkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lsungsanstzeprsentiert. Im abschlieenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsrume verallgemeinert.
Resumo:
Es gibt kaum eine przisere Beschreibung der Natur als die durch das Standardmodell der Elementarteilchen (SM). Es ist in der Lage bis auf wenige Ausnahmen, die Physik der Materie- und Austauschfelder zu beschreiben. Dennoch ist man interessiert an einer umfassenderen Theorie, die beispielsweise auch die Gravitation mit einbezieht, Neutrinooszillationen beschreibt, und die darber hinaus auch weitere offene Fragen klrt. Um dieser Theorie ein Stck nher zu kommen, befasst sich die vorliegende Arbeit mit einem effektiven Potenzreihenansatz zur Beschreibung der Physik des Standardmodells und neuer Phnomene. Mit Hilfe eines Massenparameters und einem Satz neuer Kopplungskonstanten wird die Neue Physik parametrisiert. In niedrigster Ordnung erhlt man das bekannte SM, Terme hherer Ordnung in der Kopplungskonstanten beschreiben die Effekte jenseits des SMs. Aus gewissen Symmetrie-Anforderungen heraus ergibt sich eine definierte Anzahl von effektiven Operatoren mit Massendimension sechs, die den hier vorgestellten Rechnungen zugrunde liegen. Wir berechnen zunchst fr eine bestimmte Auswahl von Prozessen zugehrige Zerfallsbreiten bzw. Wirkungsquerschnitte in einem Modell, welches das SM um einen einzigen neuen effektiven Operator erweitertet. Unter der Annahme, dass der zustzliche Beitrag zur Observablen innerhalb des experimentellen Messfehlers ist, geben wir anhand von vorliegenden experimentellen Ergebnissen aus leptonischen und semileptonischen Przisionsmessungen Ausschlussgrenzen der neuen Kopplungen in Abhngigkeit von dem Massenparameter an. Die hier angefhrten Resultate versetzen Physiker zum Einen in die Lage zu beurteilen, bei welchen gemessenen Observablen eine Erhhung der Przision sinnvoll ist, um bessere Ausschlussgrenzen angeben zu knnen. Zum anderen erhlt man einen Anhaltspunkt, welche Prozesse im Hinblick auf Entdeckungen Neuer Physik interessant sind.
Resumo:
Although the Standard Model of particle physics (SM) provides an extremely successful description of the ordinary matter, one knows from astronomical observations that it accounts only for around 5% of the total energy density of the Universe, whereas around 30% are contributed by the dark matter. Motivated by anomalies in cosmic ray observations and by attempts to solve questions of the SM like the (g-2)_mu discrepancy, proposed U(1) extensions of the SM gauge group have raised attention in recent years. In the considered U(1) extensions a new, light messenger particle, the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the SM by kinetic mixing. This allows for a search for this particle in laboratory experiments exploring the electromagnetic interaction. Various experimental programs have been started to search for hidden photons, such as in electron-scattering experiments, which are a versatile tool to explore various physics phenomena. One approach is the dedicated search in fixed-target experiments at modest energies as performed at MAMI or at JLAB. In these experiments the scattering of an electron beam off a hadronic target e+(A,Z)->e+(A,Z)+l^+l^- is investigated and a search for a very narrow resonance in the invariant mass distribution of the lepton pair is performed. This requires an accurate understanding of the theoretical basis of the underlying processes. For this purpose it is demonstrated in the first part of this work, in which way the hidden photon can be motivated from existing puzzles encountered at the precision frontier of the SM. The main part of this thesis deals with the analysis of the theoretical framework for electron scattering fixed-target experiments searching for hidden photons. As a first step, the cross section for the bremsstrahlung emission of hidden photons in such experiments is studied. Based on these results, the applicability of the Weizscker-Williams approximation to calculate the signal cross section of the process, which is widely used to design such experimental setups, is investigated. In a next step, the reaction e+(A,Z)->e+(A,Z)+l^+l^- is analyzed as signal and background process in order to describe existing data obtained by the A1 experiment at MAMI with the aim to give accurate predictions of exclusion limits for the hidden photon parameter space. Finally, the derived methods are used to find predictions for future experiments, e.g., at MESA or at JLAB, allowing for a comprehensive study of the discovery potential of the complementary experiments. In the last part, a feasibility study for probing the hidden photon model by rare kaon decays is performed. For this purpose, invisible as well as visible decays of the hidden photon are considered within different classes of models. This allows one to find bounds for the parameter space from existing data and to estimate the reach of future experiments.
Resumo:
Das Standardmodell der Teilchenphysik, das drei der vier fundamentalen Wechselwirkungen beschreibt, stimmt bisher sehr gut mit den Messergebnissen der Experimente am CERN, dem Fermilab und anderen Forschungseinrichtungen berein. rnAllerdings knnen im Rahmen dieses Modells nicht alle Fragen der Teilchenphysik beantwortet werden. So lsst sich z.B. die vierte fundamentale Kraft, die Gravitation, nicht in das Standardmodell einbauen.rnDarber hinaus hat das Standardmodell auch keinen Kandidaten fr dunkle Materie, die nach kosmologischen Messungen etwa 25 % unseres Universum ausmacht.rnAls eine der vielversprechendsten Lsungen fr diese offenen Fragen wird die Supersymmetrie angesehen, die eine Symmetrie zwischen Fermionen und Bosonen einfhrt. rnAus diesem Modell ergeben sich sogenannte supersymmetrische Teilchen, denen jeweils ein Standardmodell-Teilchen als Partner zugeordnet sind.rnEin mgliches Modell dieser Symmetrie ist das R-Parittserhaltende mSUGRA-Modell, falls Supersymmetrie in der Natur realisiert ist.rnIn diesem Modell ist das leichteste supersymmetrische Teilchen (LSP) neutral und schwach wechselwirkend, sodass es nicht direkt im Detektor nachgewiesen werden kann, sondern indirekt ber die vom LSP fortgetragene Energie, die fehlende transversale Energie (etmiss), nachgewiesen werden muss.rnrnDas ATLAS-Experiment wird 2010 mit Hilfe des pp-Beschleunigers LHC mit einer Schwerpunktenergie von sqrt(s)=7-10 TeV mit einer Luminositt von 10^32 #/(cm^2*s) mit der Suche nach neuer Physik starten.rnDurch die sehr hohe Datenrate, resultierend aus den etwa 10^8 Auslesekanlen des ATLAS-Detektors bei einer Bunchcrossingrate von 40 MHz, wird ein Triggersystem bentigt, um die zu speichernde Datenmenge zu reduzieren.rnDabei muss ein Kompromiss zwischen der verfgbaren Triggerrate und einer sehr hohen Triggereffizienz fr die interessanten Ereignisse geschlossen werden, da etwa nur jedes 10^8-te Ereignisse fr die Suche nach neuer Physik interessant ist.rnZur Erfllung der Anforderungen an das Triggersystem wird im Experiment ein dreistufiges System verwendet, bei dem auf der ersten Triggerstufe mit Abstand die hchste Datenreduktion stattfindet.rnrnIm Rahmen dieser Arbeit rn%, die vollstndig auf Monte-Carlo-Simulationen basiert, rnist zum einen ein wesentlicher Beitrag zum grundlegenden Verstndnis der Eigenschaft der fehlenden transversalen Energie auf der ersten Triggerstufe geleistet worden.rnZum anderen werden Methoden vorgestellt, mit denen es mglich ist, die etmiss-Triggereffizienz fr Standardmodellprozesse und mgliche mSUGRA-Szenarien aus Daten zu bestimmen. rnBei der Optimierung der etmiss-Triggerschwellen fr die erste Triggerstufe ist die Triggerrate bei einer Luminositt von 10^33 #/(cm^2*s) auf 100 Hz festgelegt worden.rnFr die Triggeroptimierung wurden verschiedene Simulationen bentigt, bei denen eigene Entwicklungsarbeit eingeflossen ist.rnMit Hilfe dieser Simulationen und den entwickelten Optimierungsalgorithmen wird gezeigt, dass trotz der niedrigen Triggerrate das Entdeckungspotential (fr eine Signalsignifikanz von mindestens 5 sigma) durch Kombinationen der etmiss-Schwelle mit Lepton bzw. Jet-Triggerschwellen gegenber dem bestehenden ATLAS-Triggermen auf der ersten Triggerstufe um bis zu 66 % erhht wird.
Resumo:
In this thesis the measurement of the effective weak mixing angle wma in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry (AFB) in electron-positron final states at the ATLAS experiment at the LHC. The AFB is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction pp to zgamma + X to ee + X taking a total integrated luminosity of 4.8\,fb^(-1) of data into account. The data was recorded at a proton-proton center-of-mass energy of sqrt(s)=7TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on wma are related to other SM parameters like the mass of the Higgs boson.rnrnBecause of the symmetric initial state constellation of colliding protons, there is no favoured forward or backward direction in the experimental setup. The reference axis used in the definition of the polar angle is therefore chosen with respect to the longitudinal boost of the electron-positron final state. This leads to events with low absolute rapidity have a higher chance of being assigned to the opposite direction of the reference axis. This effect called dilution is reduced when events at higher rapidities are used. It can be studied including electrons and positrons in the forward regions of the ATLAS calorimeters. Electrons and positrons are further referred to as electrons. To include the electrons from the forward region, the energy calibration for the forward calorimeters had to be redone. This calibration is performed by inter-calibrating the forward electron energy scale using pairs of a central and a forward electron and the previously derived central electron energy calibration. The uncertainty is shown to be dominated by the systematic variations.rnrnThe extraction of wma is performed using chi^2 tests, comparing the measured distribution of AFB in data to a set of template distributions with varied values of wma. The templates are built in a forward folding technique using modified generator level samples and the official fully simulated signal sample with full detector simulation and particle reconstruction and identification. The analysis is performed in two different channels: pairs of central electrons or one central and one forward electron. The results of the two channels are in good agreement and are the first measurements of wma at the Z resonance using electron final states at proton-proton collisions at sqrt(s)=7TeV. The precision of the measurement is already systematically limited mostly by the uncertainties resulting from the knowledge of the parton distribution functions (PDF) and the systematic uncertainties of the energy calibration.rnrnThe extracted results of wma are combined and yield a value of wma_comb = 0.2288 +- 0.0004 (stat.) +- 0.0009 (syst.) = 0.2288 +- 0.0010 (tot.). The measurements are compared to the results of previous measurements at the Z boson resonance. The deviation with respect to the combined result provided by the LEP and SLC experiments is up to 2.7 standard deviations.
Resumo:
The Standard Model of elementary particle physics was developed to describe the fundamental particles which constitute matter and the interactions between them. The Large Hadron Collider (LHC) at CERN in Geneva was built to solve some of the remaining open questions in the Standard Model and to explore physics beyond it, by colliding two proton beams at world-record centre-of-mass energies. The ATLAS experiment is designed to reconstruct particles and their decay products originating from these collisions. The precise reconstruction of particle trajectories plays an important role in the identification of particle jets which originate from bottom quarks (b-tagging). This thesis describes the step-wise commissioning of the ATLAS track reconstruction and b-tagging software and one of the first measurements of the b-jet production cross section in pp collisions at sqrt(s)=7 TeV with the ATLAS detector. The performance of the track reconstruction software was studied in great detail, first using data from cosmic ray showers and then collisions at sqrt(s)=900 GeV and 7 TeV. The good understanding of the track reconstruction software allowed a very early deployment of the b-tagging algorithms. First studies of these algorithms and the measurement of the b-tagging efficiency in the data are presented. They agree well with predictions from Monte Carlo simulations. The b-jet production cross section was measured with the 2010 dataset recorded by the ATLAS detector, employing muons in jets to estimate the fraction of b-jets. The measurement is in good agreement with the Standard Model predictions.
Resumo:
The dominant process in hard proton-proton collisions is the production of hadronic jets.rnThese sprays of particles are produced by colored partons, which are struck out of their confinement within the proton.rnPrevious measurements of inclusive jet cross sections have provided valuable information for the determination of parton density functions and allow for stringent tests of perturbative QCD at the highest accessible energies.rnrnThis thesis will present a measurement of inclusive jet cross sections in proton-proton collisions using the ATLAS detector at the LHC at a center-of-mass energy of 7 TeV.rnJets are identified using the anti-kt algorithm and jet radii of R=0.6 and R=0.4.rnThey are calibrated using a dedicated pT and eta dependent jet calibration scheme.rnThe cross sections are measured for 40 GeV < pT <= 1 TeV and |y| < 2.8 in four bins of absolute rapidity, using data recorded in 2010 corresponding to an integrated luminosity of 3 pb^-1.rnThe data is fully corrected for detector effects and compared to theoretical predictions calculated at next-to-leading order including non-perturbative effects.rnThe theoretical predictions are found to agree with data within the experimental and theoretic uncertainties.rnrnThe ratio of cross sections for R=0.4 and R=0.6 is measured, exploiting the significant correlations of the systematic uncertainties, and is compared to recently developed theoretical predictions.rnThe underlying event can be characterized by the amount of transverse momentum per unit rapidity and azimuth, called rhoue.rnUsing analytical approaches to the calculation of non-perturbative corrections to jets, rhoue at the LHC is estimated using the ratio measurement.rnA feasibility study of a combined measurement of rhoue and the average strong coupling in the non-perturbative regime alpha_0 is presented and proposals for future jet measurements at the LHC are made.
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.
Resumo:
The experiments at the Large Hadron Collider at the European Centre for Particle Physics, CERN, rely on efficient and reliable trigger systems for singling out interesting events. This thesis documents two online timing monitoring tools for the central trigger of the ATLAS experiment as well as the adaption of the central trigger simulation as part of the upgrade for the second LHC run. Moreover, a search for candidates for so-called Dark Matter, for which there is ample cosmological evidence, is presented. This search for generic weakly interacting massive particles (WIMPs) is based on the roughly 20/fb of proton-proton collisions at a centre-of-mass-energy of sqrt{s}=8 TeV recorded with the ATLAS detector in 2012. The considered signature are events with a highly energetic jet and large missing transverse energy. No significant deviation from the theory prediction is observed. Exclusion limits are derived on parameters of different signal models and compared to the results of other experiments. Finally, the results of a simulation study on the potential of the analysis at sqrt{s}=14 TeV are presented.
Resumo:
The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Dmd (Dms ) between neutral Bd and bar{Bd} (Bs and bar{Bs}) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing pbar{p} collisions at sqrt{s}=1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the "golden", fully hadronic decay mode Bs->Ds pi(phi pi)X at D is presented in this thesis. All data, taken between April 2002 and August 2007 with the D detector, corresponding to an integrated luminosity of int{L}dt=2.8/fb is used. The oscillation frequency Dms and the ratio |Vtd|/|Vts| are determined as Dms = (16.6 +0.5-0.4(stat) +0.4-0.3(sys)) 1/ps, |Vtd|/|Vts| = 0.213 +0.004-0.003(exp)pm 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.
Resumo:
The beta-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient "a". A first test period (2005/ 2006) showed the proof-of-principles. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient "a" (publication: Baessler et al., 2008, Europhys. Journ. A, 38, p.17-26). A second measurement cycle (2007/ 2008) aimed to under-run the relative accuracy of previous experiments (Stratowa et al. (1978), Byrne et al. (2002)) da/a =5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to da/a(syst.)=0.61 %. The statistical accuracy of the analyzed measurements is da/a(stat.)=1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects will be discussed in the last chapter.
Resumo:
In this thesis, the phenomenology of the Randall-Sundrum setup is investigated. In this context models with and without an enlarged SU(2)_L x SU(2)_R x U(1)_X x P_{LR} gauge symmetry, which removes corrections to the T parameter and to the Z b_L \bar b_L coupling, are compared with each other. The Kaluza-Klein decomposition is formulated within the mass basis, which allows for a clear understanding of various model-specific features. A complete discussion of tree-level flavor-changing effects is presented. Exact expressions for five dimensional propagators are derived, including Yukawa interactions that mediate flavor-off-diagonal transitions. The symmetry that reduces the corrections to the left-handed Z b \bar b coupling is analyzed in detail. In the literature, Randall-Sundrum models have been used to address the measured anomaly in the t \bar t forward-backward asymmetry. However, it will be shown that this is not possible within a natural approach to flavor. The rare decays t \to cZ and t \to ch are investigated, where in particular the latter could be observed at the LHC. A calculation of \Gamma_{12}^{B_s} in the presence of new physics is presented. It is shown that the Randall-Sundrum setup allows for an improved agreement with measurements of A_{SL}^s, S_{\psi\phi}, and \Delta\Gamma_s. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels in the custodial Randall-Sundrum setup is performed, revealing a sensitivity to large new-physics scales at the LHC.
Resumo:
Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology. In this thesis, a measurement of the proton recoil spectrum with the spectrometer aSPECT is described. From this spectrum the antineutrino-electron angular correlation coefficient a can be derived. In our first beam time at the FRM II in Munich, background instabilities prevented us from presenting a new value for a. In the latest beam time at the ILL in Grenoble, the background has been reduced sufficiently. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The aim of the latest beam time was a new value for a with an error well below the present literature value of 4%. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, too high to determine a meaningful result. This thesis focused on the investigation of different systematic effects. With the knowledge of the systematics gained in this thesis, we are able to improve aSPECT to perform a 1% measurement of a in a further beam time.