9 resultados para 3D Protein Modeling

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZusammenfassungIn dieser Arbeit konnte gezeigt werden, dass neben dem Oxytocinrezeptor auch die anderen Rezeptoren der Familie der Neurohypophysenhormone, die Vasopressinrezeptoren, in der gleichen Weise in ihren Bindungseigenschaften von Cholesterin beeinflusst werden. Im Gegensatz dazu zeigt der Cholecystokininrezeptor Typ B keine direkte Wechselwirkung mit Cholesterin. Durch Austausch der Transmembranhelices 6 und 7 des Oxytocinrezeptors mit entsprechenden Bereichen des Cholecystokininrezeptors wurde ein Rezeptor erzeugt, der bezüglich Bindungsverhalten und Cholesterinabhängigkeit keine Unterschiede zu dem Wildtyp-Oxytocinrezeptor zeigte. Durch den Einsatz von computergestütztem 'Modeling' wurde für die Interaktion des Oxytocinrezeptors mit Cholesterin eine Stelle zwischen den Transmembranhelices 5 und 6 vorgeschlagen. Um die Verteilung des Cholesterins in der Zelle zu untersuchen, wurde ein selbst synthetisiertes, fluoreszierendes Cholesterinderivat (Fluochol) eingesetzt. Die Komplexierung in Cyclodextrinen ermöglichte die Einlagerung von Fluochol in die Plasmamembran von Zellen. Der Einstrom des Fluochol in das ER erfolgte innerhalb von Minuten und war energieunabhängig. Schließlich wurde Fluochol in Lipidtröpfchen transportiert, die in fast allen Zellen für die Speicherung überschüssiger intrazellulärer Lipide dienen. Die Tröpfchen werden aus dem endoplasmatischen Retikulum gebildet und enthalten neben Phospholipiden auch Cholesterin, das durch das Enzym ACAT mit langkettigen Fettsäuren verestert wird.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden die bioinformatischen Methoden der Homologie-Modellierung und Molekularen Modellierung dazu benutzt, die dreidimensionalen Strukturen verschiedenster Proteine vorherzusagen und zu analysieren. Experimentelle Befunde aus Laborversuchen wurden dazu benutzt, die Genauigkeit der Homologie-Modelle zu erhöhen. Die Ergebnisse aus den Modellierungen wurden wiederum dazu benutzt, um neue experimentelle Versuche vorzuschlagen. Anhand der erstellten Modelle und bekannten Kristallstrukturen aus der Protein-Datenbank PDB wurde die Struktur-Funktionsbeziehung verschiedener Tyrosinasen untersucht. Dazu gehörten sowohl die Tyrosinase des Bakteriums Streptomyces als auch die Tyrosinase der Hausmaus. Aus den vergleichenden Strukturanalysen der Tyrosinasen resultierten Mechanismen für die Monophenolhydroxylase-Aktivität der Tyrosinasen sowie für den Import der Kupferionen ins aktive Zentrum. Es konnte der Beweis geführt werden, daß die Blockade des CuA-Zentrums tatsächlich der Grund für die unterschiedliche Aktivität von Tyrosinasen und Catecholoxidasen ist. Zum ersten Mal konnte mit der Maus-Tyrosinase ein vollständiges Strukturmodell einer Säugetier-Tyrosinase erstellt werden, das dazu in der Lage ist, die Mechanismen bekannter Albino-Mutationen auf molekularer Ebene zu erklären. Die auf der Basis des ermittelten 3D-Modells gewonnenen Erkenntnisse über die Wichtigkeit bestimmter Aminosäuren für die Funktion wurde durch gerichtete Mutagenese an der rekombinant hergestellten Maus-Tyrosinase getestet und bestätigt. Weiterhin wurde die Struktur der Tyrosinase des Krebses Palinurus elephas durch eine niedrigaufgelöste 3D-Rekonstruktion aus elektronenmikroskopischen Bildern aufgeklärt. Der zweite große Themenkomplex umfasst die Strukturanalyse der Lichtsammlerkomplexe LHCI-730 und LHCII. Im Falle des LHCII konnte der Oligomerisierungszustand der LHCMoleküle mit diskreten Konformationen des N-Terminus korreliert werden. Auch hier kam eine Kombination von Homologie-Modellierung und einer experimentellen Methode, der Elektronen-Spin-Resonanz-Messung, zum Einsatz. Die Änderung des Oligomerisierungszustands des LHCII kontrolliert den Energiezufluß zu den Photosystemen PS I und PS II. Des Weiteren wurde ein vollständiges Modell des LHCI-730 erstellt, um die Auswirkungen gerichteter Mutagenese auf das Dimerisierungsverhalten zu untersuchen. Auf Basis dieses Modells wurden die Wechselwirkungen zwischen den Monomeren Lhca1 und Lhca4 evaluiert und potentielle Bindungspartner identifiziert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Hämocyanine der Cephalopoden Nautilus pompilius und Sepia officinalis sorgen für den Sauerstofftransport zwischen den Kiemen und den Geweben. Sie bestehen aus einem zylindrischen Dekamer mit interner Kragenstruktur. Während eine Untereinheit (also eine Polypeptidkette) bei NpH aus sieben paralogen funktionellen Domänen (FU-a bis FU-g) besteht, führte ein Genduplikationsereignis der FU-d zu acht FUs in SoH (a, b, c, d, d´, e, f, g). In allen Mollusken Hämocyaninen bilden sechs dieser FUs den äußeren Ring und die restlichen die interne Kragenstruktur. rnrnIn dieser Arbeit wurde ein dreidimensionales Modell des Hämocyanins von Sepia officinalis (SoH) erstellt. Die Rekonstruktion, mit einer Auflösung von 8,8Å (FSC=0,5), erlaubt das Einpassen von Homolologiemodellen und somit das Erstellen eines molekularen Modells mit pseudo atomarer Auflösung. Des Weiteren wurden zwei Rekonstruktionen des Hämocyanins von Nautilus pompilius (NpH) in verschiedenen Oxygenierungszuständen erstellt. Die auf 10 und 8,1Å aufgelösten Modelle zeigen zwei verschiedene Konformationen des Proteins. Daraus ließ sich eine Modellvorstellung über die allosterische Funktionsweise ableiten. Die hier erreichte Auflösung von 8Å ist die momentan höchste eines Molluskenhämocyanins. rnAuf Grundlage des molekularen Modells von SoH konnte die Topologie des Proteins aufgeklärt werden. Es wurde gezeigt, dass die zusätzliche FU-d´ in den Kragen integriert ist und somit die prinzipielle Wandarchitektur aller Mollusken Hämocyanine identisch ist. Wie die Analyse des erstellten molekularen Modells zeigt werden sind die beiden Isoformen (SoH1 und SoH2) in den Bereichen der Interfaces nahezu identisch; auch der Vergleich mit NpH zeigt grosse Übereinstimmungen. Des weiteren konnte eine Fülle von Informationen bezüglich der allosterischen Signalübertragung innerhalb des Moleküls gewonnen werden. rnDer Versuch, NpH in verschiedenen Oxygenierungszuständen zu zeigen, war erfolgreich. Die Datensätze, die unter zwei atmosphärischen Bedingungen präpariert wurden, führten reproduzierbar zu zwei unterschiedlichen Rekonstruktionen. Dies zeigt, daß der hier entwickelte experimentelle Ansatz funktioniert. Er kann nun routinemäßig auf andere Proteine angewandt werden. Wie der strukturelle Vergleich zeigte, verändert sich die Orientierung der FUs durch die Oxygenierung leicht. Dies wiederum beeinflusst die Anordnung innerhalb der Interfaces sowie die Abstände zwischen den beteiligten Aminosäuren. Aus dieser Analyse konnte eine Modellvorstellung zum allosterischen Signaltransfer innerhalb des Moleküls abgeleitet werden, die auf einer Umordnung von Salzbrücken basiert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhogocytes, also termed ‘pore cells’, exist free in the hemolymph or embedded in the connective tissue of different body parts of molluscs, notably gastropods. These unique cells can be round, elongated or irregularly shaped, and up to 30 μm in diameter. Their hallmark is the so-called slit apparatus: i.e. pocket-like invaginations of the plasma membrane creating extracellular lacunae, bridged by cytoplasmic bars. These bars form distinctive slits of ca. 20 nm width. A slit diaphragm composed of proteins establishes a molecular sieve with holes of 20 x 20 nm. Different functions have been assigned to this special molluscan cell type, notably biosynthesis of the hemolymph respiratory protein hemocyanin. It has further been proposed, but not proven, that in the case of red-blooded snail species rhogocytes might synthesize the hemoglobin. However, the secretion pathway of these hemolymph proteins, and the functional role of the enigmatic slit apparatus remained unclear. Additionally proposed functions of rhogocytes, such as heavy metal detoxification or hemolymph protein degradation, are also not well studied. This work provides more detailed electron microscopical, histological and immunobiochemical information on the structure and function of rhogocytes of the freshwater snails Biomphalaria glabrata and Lymnaea stagnalis. By in situ hybridization on mantle tissues, it proves that B. glabrata rhogocytes synthesize hemoglobin and L. stagnalis rhogocytes synthesize hemocyanin. Hemocyanin is present, in endoplasmic reticulum lacunae and in vesicles, as individual molecules or pseudo-crystalline arrays. The first 3D reconstructions of rhogocytes are provided by means of electron tomography and show unprecedented details of the slit apparatus. A highly dense material in the cytoplasmic bars close to the diaphragmatic slits was shown, by immunogold labeling, to contain actin. By immunofluorescence microscopy, the protein nephrin was localized at the periphery of rhogocytes. The presence of both proteins in the slit apparatus supports the previous hypothesis, hitherto solely based on similarities of the ultrastructure, that the molluscan rhogocytes are phylogenetically related to mammalian podocytes and insect nephrocytes. A possible secretion pathway of respiratory proteins that includes a transfer mechanism of vesicles through the diaphragmatic slits is proposed and discussed. We also studied, by electron microscopy, the reaction of rhogocytes in situ to two forms of animal stress: deprivation of food and cadmium contamination of the tank water. Significant cellular reactions to both stressors were observed and documented. Notably, the slit apparatus surface and the number of electron-dense cytoplasmic vesicles increased in response to cadmium stress. Food deprivation led to an increase in hemocyanin production. These observations are also discussed in the framework of using such animals as potential environmental biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.