50 resultados para tumor cells
Resumo:
Aus dem tumorreaktiven T-Zellrepertoire der Melanompatientin Ma-Mel-86/INTH, bei der im Verlauf Lymphknotenmetastasen HLA-Klasse I-negativer Tumorzellen auftraten, wurden durch Stimulation mit autologen Tumorzellen CD8+ T-Zellklone isoliert und expandiert, die auf Melanomzellen der Patientin CSF2RA (engl. GM-CSF receptor alpha chain) in HLA-unabhängiger Weise erkannten. Aus einem der T-Zellklone wurde ein CSF2RA-reaktiver α:β-T-Zellrezeptor (TCR, engl. T-cell receptor) kloniert (Bezeichnung: TCR-1A.3/46). Die α-Kette des TCR enthielt die Domänen TRAV14/DV4*01, TRAJ48*01 und TRAC*01, die β-Kette die Domänen TRBV10-3*01, TRBD2*01, TRBJ2-7*01 und TRBC2*01. Durch Austausch der humanen konstanten gegen die homologen murinen Domänen wurde der TCR optimiert (Bezeichnung: cTCR-1A.3/46) und hinsichtlich seiner Expression und Funktionalität nach retroviralem Transfer in humane PBMC (engl. peripheral blood mononuclear cells) im 51Chromfreisetzungstest, im IFN-γ-ELISpot-Assay und in einem Degranulations-Assay validiert. TCR-transgene T-Zellen lysierten nicht nur spezifisch die HLA-defizienten, CSF2RA+ Melanomlinien des Modells Ma-Mel-86, sondern erkannten auch Zelllinien verschiedener Spezies nach Transfektion von CSF2RA sowie Monozyten, Granulozyten, dendritische Zellen und ein breites Spektrum hämatologischer Malignome myeloiden Ursprungs ungeachtet deren HLA-Phänotypen. Lymphatische Zellen sowie CD34+ Blutstammzellen wurden in In vitro-Untersuchungen nicht erkannt. Der Zusatz von GM-CSF zu Zellen, die CSF2RA und CSF2RB exprimierten, inhibierte die Erkennung durch TCR-transgene PBMC, während die Koexpression der α- und der ß-Kette des GM-CSF-Rezeptors alleine keinen negativen Effekt auf die Erkennung hatte. Daraus war zu schließen, dass CSF2RA präferentiell freistehend und weniger nach Integration in den heteromultimerischen GM-CSF-Rezeptor-Komplex erkannt wurde. In der zweidimensionalen Collier-de-Perles-Visualisierung der IMGT-Datenbank (engl. International immunogenetics information system) wies der CSF2RA-reaktive TCR-1A.3/46 im Vergleich zu TCR von konventionellen, HLA-restringierten T-Zellen keine Besonderheiten auf. Darüber hinaus waren auch die von den HLA-unabhängigen T-Zellen exprimierten CD8-Moleküle identisch zu den CD8-Molekülen HLA-abhängiger CTL (engl. cytotoxic T lymphocytes). Die Präsenz von CD8-Molekülen förderte die HLA-unabhängige Erkennung von CSF2RA, schien aber dafür nicht zwingend erforderlich zu sein, da Antikörper gegen CD8 die Erkennung zu ca. 65 % blockierten und TCR-transgene CD4+ T-Zellen im Vergleich zu TCR-transduzierten CD8+ T-Zellen eine deutlich verringerte, aber noch erhaltene Funktionalität aufwiesen. Es ist derzeit nicht klar, ob HLA-unabhängige T-Zellen gegen CSF2RA im peripheren Blut der Patientin vorkamen, weil sie der im Tiermodell postulierten Thymusselektion MHC-unabhängiger TCR (Tikhonova et al., Immunity 36:79, 2012) entkommen waren, oder weil ein ursprünglich gegen einen HLA-Peptid-Komplex gerichteter TCR eine HLA-unabhängige Kreuzreaktivität aufwies. CSF2RA verbessert die Glucoseutilisation in malignen Zellen, und es wurden ihm embryotrophe Eigenschaften zugeschrieben (Spielholz et al., Blood 85:973, 1995; Sjöblom et al., Biol. Reprod. 67:1817, 2002). Damit kann CSF2RA malignes Wachstum fördern und ist somit ein potentielles Zielmolekül für die Immuntherapie. Seine HLA-unabhängige Erkennung würde sowohl die HLA-Vielfalt als auch den HLA-Verlust als typische Limitationen der T-Zellimmuntherapie umgehen. Zur Überprüfung der In vivo-Spezifität des HLA-unabhängigen TCR gegen CSF2RA und damit zum Ausschluss relevanter off-tumor-/on-target- bzw. off-tumor-/off-target-Effekte ist jedoch eine Testung in einem präklinischen Tiermodell erforderlich.
Resumo:
Verschiedene Krankheiten gehen mit einer fehlerhaften Vaskularisierung einher. Allerdings ist der Erfolg der derzeitig vorhandenen Therapieansätze, die sich z.B. auf VEGF fokussieren, beschränkt. Aus diesem Grund ist es wichtig, neue Strategien zur Regulation der Angiogenese zu entwickeln. Hierbei stehen neue Signaltransduktions-wege im Fokus, die sich als vielversprechend erweisen, um Angiogenese zu fördern oder zu inhibieren. Die Blutgefäßneubildung ist ein hochregulierter Prozess, der mit einer hohen Proteinsyntheserate verknüpft ist. Die Angiogenese wurde bereits mit dem ER-Stress Signaltransduktionsweg, der Unfolded Protein Response (UPR), in Verbindung gebracht (Zeng et al., 2013; Bouvier et al., 2012). Eine im Rahmen der vorliegenden Studie durchgeführte histologische Untersuchung konnte eine Fehlregulierung der Expression von UPR beteiligten Proteinen in vivo unter pathologischen Bedingungen gezeigt werden. Bemerkenswerter Weise war BiP, der Hauptsensor der UPR, in Endothelzellen von Angiosarkomen sehr stark exprimiert. In in vitro Experimenten wurde gezeigt, dass das Herunterregulieren von BiP mittels RNAi Einfluss auf die inflammatorische Antwort und die Bildung angiogener Strukturen in Endothelzellen nimmt. Das Herunterregulieren des Proteins BiP verstärkte die inflammatorische Antwort von HUVEC, was sich in einer gesteigerten Bildung von IL-8 und ICAM-1 äußerte und wurde auf die Aktivierung der UPR durch die verringerte Menge an BiP zurückgeführt. Der Phänotyp BiP-herunterregulierter Zellen entsprach dem untransfizierter Zellen, welcher durch das Cytoskelett und die Expression des endothelspezifischen Markers CD31 charakterisiert wurde. Im Gegensatz dazu änderte sich der Grad der Glykosylierung in transfizierten Zellen. Im Hinblick auf die Blutgefäßbildung, zeigten sich eine gehemmte Migration und eine inhibierte Bildung Gefäß-ähnlicher Strukturen in BiP-herunterregulierten Zellen. In diesen Zellen war die Expression von KDR auffallend stark inhibiert, wohingegen die Flt-1 Expression sich als gleichbleibend herausstellte, was ebenfalls auf die Aktivierung der UPR zurückgeführt werden konnte. Alternativ wäre der reduzierte Level des Proteins BiP im Hinblick auf die Funktion als Helferenzym in der Proteinfaltung eine mögliche Erklärung für die gehemmte Expression von KDR. Die Ergebnisse dieser Studie deuten darauf hin, dass stabile Spiegel von BiP die Regulierung der Angiogenese durch die Kontrolle der UPR in physiologischen Prozessen unterstützen könnte. Eine Fehlregulierung von BiP durch Unterdrückung der UPR, wie z.B. in malignen Tumoren, könnte Tumorzellen und beteiligten Endothelzellen einen Vorteil verschaffen und zu einer gestörten Vaskularisierung führen. Somit stellt das Stresssensorprotein BiP und die UPR einen potentiellen Angriffspunkt für die Regulation der Angiogenese dar.
Resumo:
Krebs stellt eine der häufigsten Todesursachen in Europa dar. Grundlage für eine langfristige Verbesserung des Behandlungserfolgs ist ein molekulares Verständnis der Mechanismen, welche zur Krankheitsentstehung beitragen. In diesem Zusammenhang spielen Proteasen nicht nur eine wichtige Rolle, sondern stellen auch bei vielerlei Erkrankungen bereits anerkannte Zielstrukturen derzeitiger Behandlungsstrategien dar. Die Protease Threonin Aspartase 1 (Taspase1) spielt eine entscheidende Rolle bei der Aktivierung von Mixed Lineage Leukemia (MLL)-Fusionsproteinen und somit bei der Entstehung aggressiver Leukämien. Aktuelle Arbeiten unterstreichen zudem die onkologische Relevanz von Taspase1 auch für solide Tumore. Die Kenntnisse über die molekularen Mechanismen und Signalnetzwerke, welche für die (patho)biologischen Funktionen von Taspase1 verantwortlich sind, stellen sich allerdings noch immer als bruchstückhaft dar. Um diese bestehenden Wissenslücken zu schließen, sollten im Rahmen der Arbeit neue Strategien zur Inhibition von Taspase1 erarbeitet und bewertet werden. Zusätzlich sollten neue Einsichten in evolutionären Funktionsmechanismen sowie eine weitergehende Feinregulation von Taspase1 erlangt werden. Zum einen erlaubte die Etablierung und Anwendung eines zellbasierten Taspase1-Testsystem, chemische Verbindungen auf deren inhibitorische Aktivität zu testen. Überraschenderweise belegten solch zelluläre Analysen in Kombination mit in silico-Modellierungen eindeutig, dass ein in der Literatur postulierter Inhibitor in lebenden Tumorzellen keine spezifische Wirksamkeit gegenüber Taspase1 zeigte. Als mögliche Alternative wurden darüber hinaus Ansätze zur genetischen Inhibition evaluiert. Obwohl publizierte Studien Taspase1 als ααββ-Heterodimer beschreiben, konnte durch Überexpression katalytisch inaktiver Mutanten kein trans-dominant negativer Effekt und damit auch keine Inhibition des wildtypischen Enzyms beobachtet werden. Weiterführende zellbiologische und biochemische Analysen belegten erstmalig, dass Taspase1 in lebenden Zellen in der Tat hauptsächlich als Monomer und nicht als Dimer vorliegt. Die Identifizierung evolutionär konservierter bzw. divergenter Funktionsmechanismen lieferte bereits in der Vergangenheit wichtige Hinweise zur Inhibition verschiedenster krebsrelevanter Proteine. Da in Drosophila melanogaster die Existenz und funktionelle Konservierung eines Taspase1-Homologs postuliert wurde, wurde in einem weiteren Teil der vorliegenden Arbeit die evolutionäre Entwicklung der Drosophila Taspase1 (dTaspase1) untersucht. Obwohl Taspase1 als eine evolutionär stark konservierte Protease gilt, konnten wichtige Unterschiede zwischen beiden Orthologen festgestellt werden. Neben einem konservierten autokatalytischen Aktivierungsmechanismus besitzt dTaspase1 verglichen mit dem humanen Enzym eine flexiblere Substraterkennungs-sequenz, was zu einer Vergrößerung des Drosophila-spezifischen Degradoms führt. Diese Ergebnisse zeigen des Weiteren, dass zur Definition und Vorhersage des Degradoms nicht nur proteomische sondern auch zellbiologische und bioinformatische Untersuchungen geeignet und notwendig sind. Interessanterweise ist die differentielle Regulation der dTaspase1-Aktivität zudem auf eine veränderte intrazelluläre Lokalisation zurückzuführen. Das Fehlen von in Vertebraten hochkonservierten aktiven Kernimport- und nukleolären Lokalisationssignalen erklärt, weshalb dTaspase1 weniger effizient nukleäre Substrate prozessiert. Somit scheint die für die humane Taspase1 beschriebene Regulation von Lokalisation und Aktivität über eine Importin-α/NPM1-Achse erst im Laufe der Entwicklung der Vertebraten entstanden zu sein. Es konnte also ein bislang unbekanntes evolutionäres Prinzip identifiziert werden, über welches eine Protease einen Transport- bzw. Lokalisations-basierten Mechanismus zur Feinregulation ihrer Aktivität „von der Fliege zum Menschen“ nutzt. Eine weitere Möglichkeit zur dynamischen Funktionsmodulation bieten post-translationale Modifikationen (PTMs) der Proteinsequenz, zu welcher Phosphorylierung und Acetylierung zählen. Interessanterweise konnte für die humane Taspase1 über den Einsatz unabhängiger Methoden einschließlich massenspektrometrischer Analysen eine Acetylierung durch verschiedene Histon-Acetyltransferasen (HATs) nachgewiesen werden. Diese Modifikation erfolgt reversibel, wobei vor allem die Histon-Deacetylase HDAC1 durch Interaktion mit Taspase1 die Deacetylierung der Protease katalysiert. Während Taspase1 in ihrer aktiven Konformation acetyliert vorliegt, kommt es nach Deacetylierung zu einer Reduktion ihrer enzymatischen Aktivität. Somit scheint die Modulation der Taspase1-Aktivität nicht allein über intra-proteolytische Autoaktivierung, Transport- und Interaktionsmechanismen, sondern zudem durch post-translationale Modifikationen gesteuert zu werden. Zusammenfassend konnten im Rahmen dieser Arbeit entscheidende neue Einblicke in die (patho)biologische Funktion und Feinregulation der Taspase1 gewonnen werden. Diese Ergebnisse stellen nicht nur einen wichtigen Schritt in Richtung eines verbesserten Verständnis der „Taspase1-Biologie“, sondern auch zur erfolgreichen Inhibition und Bewertung der krebsrelevanten Funktion dieser Protease dar.
Resumo:
6. Summary Despite the lack of direct evidence from large clinical trials for mutagenic and genotoxic effects of GTN therapy, the present study show s the induction of pre-mutagenic lesions, such as 8- oxo - G and O 6 - me - G by GTN t reatment as well as increased formation of DNA strand breaks. These results were obtained in an in vitro (EA.hy 926 – human endothelial cell line) and in vivo (Wistar rats and C57BL/6 mice) setting. However, GTN - induced DNA damage had no effect on the degr ee of nitrate tolerance but only on other pathological side effects such as oxidative stress, as confirmed by studies in MGMT knockout mice. Of clinical importance , this study establishes potent apoptotic properties of organic nitrates, which has been demo nstrated by the levels of the novel apoptotic marker and caspase - 3 substrate, fractin, as well as levels of cleaved caspase - 3 , the activated form of this pro - apoptotic enzyme . The p rotein analy tical data ha ve been confirmed by an independent assay for the apoptosis , Cell death detection assay (TUNEL) . First, these GTN - mediated apoptotic effects may account for the previously reported anti - cancer effects of GTN therapy (probably based on induction of apoptosis in tumor cells). Second, these GTN - mediated apop totic effects may account for the increased mortality rates observed in the group of organic nitrate - treated patients as reported by two independent meta - analysis (probably due to induction of apoptosis in highly beneficial endothelial progenitor cells as well as in cardiomyocytes during wound healing and cardiac remodeling) . Summary of the current investigations can be seen in Figure 18.
Resumo:
Da nicht-synonyme tumorspezifische Punktmutationen nur in malignen Geweben vorkommen und das veränderte Proteinprodukt vom Immunsystem als „fremd“ erkannt werden kann, stellen diese einen bisher ungenutzten Pool von Zielstrukturen für die Immuntherapie dar. Menschliche Tumore können individuell bis zu tausenden nicht-synonymer Punktmutationen in ihrem Genom tragen, welche nicht der zentralen Immuntoleranz unterliegen. Ziel der vorliegenden Arbeit war die Hypothese zu untersuchen, dass das Immunsystem in der Lage sein sollte, mutierte Epitope auf Tumorzellen zu erkennen und zu klären, ob auf dieser Basis eine wirksame mRNA (RNA) basierte anti-tumorale Vakzinierung etabliert werden kann. Hierzu wurde von Ugur Sahin und Kollegen, das gesamte Genom des murinen B16-F10 Melanoms sequenziert und bioinformatisch analysiert. Im Rahmen der NGS Sequenzierung wurden mehr als 500 nicht-synonyme Punktmutationen identifiziert, von welchen 50 Mutationen selektiert und durch Sanger Sequenzierung validiert wurden. rnNach der Etablierung des immunologischen Testsysteme war eine Hauptfragestellung dieser Arbeit, die selektierten nicht-synonyme Punktmutationen in einem in vivo Ansatz systematisch auf Antigenität zu testen. Für diese Studien wurden mutierte Sequenzen in einer Länge von 27 Aminosäuren genutzt, in denen die mutierte Aminosäure zentral positioniert war. Durch die Länge der Peptide können prinzipiell alle möglichen MHC Klasse-I und -II Epitope abgedeckt werden, welche die Mutation enthalten. Eine Grundidee des Projektes Ansatzes ist es, einen auf in vitro transkribierter RNA basierten oligotopen Impfstoff zu entwickeln. Daher wurden die Impfungen naiver Mäuse sowohl mit langen Peptiden, als auch in einem unabhängigen Ansatz mit peptidkodierender RNA durchgeführt. Die Immunphänotypisierung der Impfstoff induzierten T-Zellen zeigte, dass insgesamt 16 der 50 (32%) mutierten Sequenzen eine T-Zellreaktivität induzierten. rnDie Verwendung der vorhergesagten Epitope in therapeutischen Vakzinierungsstudien bestätigten die Hypothese das mutierte Neo-Epitope potente Zielstrukturen einer anti-tumoralen Impftherapie darstellen können. So wurde in therapeutischen Tumorstudien gezeigt, dass auf Basis von RNA 9 von 12 bestätigten Epitopen einen anti-tumoralen Effekt zeigte.rnÜberaschenderweise wurde bei einem MHC Klasse-II restringierten mutiertem Epitop (Mut-30) sowohl in einem subkutanen, als auch in einem unabhängigen therapeutischen Lungenmetastasen Modell ein starker anti-tumoraler Effekt auf B16-F10 beobachtet, der dieses Epitop als neues immundominantes Epitop für das B16-F10 Melanom etabliert. Um den immunologischen Mechanismus hinter diesem Effekt näher zu untersuchen wurde in verschieden Experimenten die Rolle von CD4+, CD8+ sowie NK-Zellen zu verschieden Zeitpunkten der Tumorentwicklung untersucht. Die Analyse des Tumorgewebes ergab, eine signifikante erhöhte Frequenz von NK-Zellen in den mit Mut-30 RNA vakzinierten Tieren. Das NK Zellen in der frühen Phase der Therapie eine entscheidende Rolle spielen wurde anhand von Depletionsstudien bestätigt. Daran anschließend wurde gezeigt, dass im fortgeschrittenen Tumorstadium die NK Zellen keinen weiteren relevanten Beitrag zum anti-tumoralen Effekt der RNA Vakzinierung leisten, sondern die Vakzine induzierte adaptive Immunantwort. Durch die Isolierung von Lymphozyten aus dem Tumorgewebe und deren Einsatz als Effektorzellen im IFN-γ ELISPOT wurde nachgewiesen, dass Mut-30 spezifische T-Zellen das Tumorgewebe infiltrieren und dort u.a. IFN-γ sekretieren. Dass diese spezifische IFN-γ Ausschüttung für den beobachteten antitumoralen Effekt eine zentrale Rolle einnimmt wurde unter der Verwendung von IFN-γ -/- K.O. Mäusen bestätigt.rnDas Konzept der individuellen RNA basierten mutationsspezifischen Vakzine sieht vor, nicht nur mit einem mutations-spezifischen Epitop, sondern mit mehreren RNA-kodierten Mutationen Patienten zu impfen um der Entstehung von „escape“-Mutanten entgegenzuwirken. Da es nur Erfahrung mit der Herstellung und Verabreichung von Monotop-RNA gab, also RNA die für ein Epitop kodiert, war eine wichtige Fragestellungen, inwieweit Oligotope, welche die mutierten Sequenzen sequentiell durch Linker verbunden als Fusionsprotein kodieren, Immunantworten induzieren können. Hierzu wurden Pentatope mit variierender Position des einzelnen Epitopes hinsichtlich ihrer in vivo induzierten T-Zellreaktivitäten charakterisiert. Die Experimente zeigten, dass es möglich ist, unabhängig von der Position im Pentatop eine Immunantwort gegen ein Epitop zu induzieren. Des weiteren wurde beobachtet, dass die induzierten T-Zellfrequenzen nach Pentatop Vakzinierung im Vergleich zur Nutzung von Monotopen signifikant gesteigert werden kann.rnZusammenfassend wurde im Rahmen der vorliegenden Arbeit präklinisch erstmalig nachgewiesen, dass nicht-synonyme Mutationen eine numerisch relevante Quelle von Zielstrukturen für die anti-tumorale Immuntherapie darstellen. Überraschenderweise zeigte sich eine dominante Induktion MHC-II restringierter Immunantworten, welche partiell in der Lage waren massive Tumorabstoßungsreaktionen zu induzieren. Im Sinne einer Translation der gewonnenen Erkenntnisse wurde ein RNA basiertes Oligotop-Format etabliert, welches Eingang in die klinische Testung des Konzeptes fand.rn