303 resultados para berufliche Bildung
Resumo:
Sekundäres organisches Aerosol (SOA) ist ein wichtiger Bestandteil von atmosphärischen Aerosolpartikeln. Atmosphärische Aerosole sind bedeutsam, da sie das Klima über direkte (Streuung und Absorption von Strahlung) und indirekte (Wolken-Kondensationskeime) Effekte beeinflussen. Nach bisherigen Schätzungen ist die SOA-Bildung aus biogenen Kohlenwasserstoffen global weit wichtiger als die SOA-Bildung aus anthropogenen Kohlenwasserstoffen. Reaktive Kohlenwasserstoffe, die in großen Mengen von der Vegetation emittiert werden und als die wichtigsten Vorläufersubstanzen für biogenes SOA gelten, sind die Terpene. In der vorliegenden Arbeit wurde eine Methode entwickelt, welche die Quantifizierung von aciden Produkten der Terpen-Oxidation ermöglicht. Die Abscheidung des größenselektierten Aerosols (PM 2.5) erfolgte auf Quarzfilter, die unter Zuhilfenahme von Ultraschall mittels Methanol extrahiert wurden. Nach Aufkonzentrierung und Lösungsmittelwechsel auf Wasser sowie Standardaddition wurden die Proben mit einer Kapillar-HPLC-ESI-MSn-Methode analysiert. Das verwendete Ionenfallen-Massenspektrometer (LCQ-DECA) bietet die Möglichkeit, Strukturaufklärung durch selektive Fragmentierung der Qasimolekülionen zu betreiben. Die Quantifizierung erfolgte teilweise im MS/MS-Modus, wodurch Selektivität und Nachweisgrenze verbessert werden konnten. Um Produkte der Terpen-Oxidation zu identifizieren, die nicht als Standards erhältlich waren, wurden Ozonolysexperimente durchgeführt. Dadurch gelang die Identifizierung einer Reihe von Oxidationsprodukten in Realproben. Neben schon bekannten Produkten der Terpen-Oxidation konnten einige Produkte erstmals in Realproben eindeutig als Produkte des α Pinens nachgewiesen werden. In den Proben der Ozonolyseexperimente konnten auch Produkte mit hohem Molekulargewicht (>300 u) nachgewiesen werden, die Ähnlichkeit zeigen zu den als Dimeren oder Polymeren in der Literatur bezeichneten Substanzen. Sie konnten jedoch nicht in Feldproben gefunden werden. Im Rahmen von 5 Messkampagnen in Deutschland und Finnland wurden Proben der atmosphärischen Partikelphase genommen. Die Quantifizierung von Produkten der Oxidation von α-Pinen, β-Pinen, 3-Caren, Sabinen und Limonen in diesen Proben ergab eine große zeitliche und örtliche Variationsbreite der Konzentrationen. Die Konzentration von Pinsäure bewegte sich beispielsweise zwischen etwa 0,4 und 21 ng/m³ während aller Messkampagnen. Es konnten stets Produkte verschiedener Terpene nachgewiesen werden. Produkte einiger Terpene eignen sich sogar als Markersubstanzen für verschiedene Pflanzenarten. Sabinen-Produkte wie Sabinsäure können als Marker für die Emissionen von Laubbäumen wie Buchen oder Birken verwendet werden, während Caren-Produkte wie Caronsäure als Marker für Nadelbäume, speziell Kiefern, verwendet werden können. Mit den quantifizierten Substanzen als Marker wurde unter zu Hilfenahme von Messungen des Gehaltes an organischem und elementarem Kohlenstoff im Aerosol der Anteil des sekundären organischen Aerosols (SOA) errechnet, der von der Ozonolyse der Terpene stammt. Erstaunlicherweise konnten nur 1% bis 8% des SOA auf die Ozonolyse der Terpene zurückgeführt werden. Dies steht im Gegensatz zu der bisherigen Meinung, dass die Ozonolyse der Terpene die wichtigste Quelle für biogenes SOA darstellt. Gründe für diese Diskrepanz werden in der Arbeit diskutiert. Um die atmosphärischen Prozesse der Bildung von SOA vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.
Resumo:
A one-dimensional multi-component reactive fluid transport algorithm, 1DREACT (Steefel, 1993) was used to investigate different fluid-rock interaction systems. A major short coming of mass transport calculations which include mineral reactions is that solid solutions occurring in many minerals are not treated adequately. Since many thermodynamic models of solid solutions are highly non-linear, this can seriously impact on the stability and efficiency of the solution algorithms used. Phase petrology community saw itself faced with a similar predicament 10 years ago. To improve performance and reliability, phase equilibrium calculations have been using pseudo compounds. The same approach is used here in the first, using the complex plagioclase solid solution as an example. Thermodynamic properties of a varying number of intermediate plagioclase phases were calculated using ideal molecular, Al-avoidance, and non-ideal mixing models. These different mixing models can easily be incorporated into the simulations without modification of the transport code. Simulation results show that as few as nine intermediate compositions are sufficient to characterize the diffusional profile between albite and anorthite. Hence this approach is very efficient, and can be used with little effort. A subsequent chapter reports the results of reactive fluid transport modeling designed to constrain the hydrothermal alteration of Paleoproterozoic sediments of the Southern Lake Superior region. Field observations reveal that quartz-pyrophyllite (or kaolinite) bearing assemblages have been transformed into muscovite-pyrophyllite-diaspore bearing assemblages due to action of fluids migrating along permeable flow channels. Fluid-rock interaction modeling with an initial qtz-prl assemblage and a K-rich fluid simulates the formation of observed mineralogical transformation. The bulk composition of the system evolves from an SiO2-rich one to an Al2O3+K2O-rich one. Simulations show that the fluid flow was up-temperature (e.g. recharge) and that fluid was K-rich. Pseudo compound approach to include solid solutions in reactive transport models was tested in modeling hydrothermal alteration of Icelandic basalts. Solid solutions of chlorites, amphiboles and plagioclase were included as the secondary mineral phases. Saline and fresh water compositions of geothermal fluids were used to investigate the effect of salinity on alteration. Fluid-rock interaction simulations produce the observed mineral transformations. They show that roughly the same alteration minerals are formed due to reactions with both types of fluid which is in agreement with the field observations. A final application is directed towards the remediation of nitrate rich groundwaters. Removal of excess nitrate from groundwater by pyrite oxidation was modeled using the reactive fluid transport algorithm. Model results show that, when a pyrite-bearing, permeable zone is placed in the flow path, nitrate concentration in infiltrating water can be significantly lowered, in agreement with proposals from the literature. This is due to nitrogen reduction. Several simulations investigate the efficiency of systems with different mineral reactive surface areas, reactive barrier zone widths, and flow rates to identify the optimum setup.
Resumo:
Zusammenfassung Diese Arbeit beschreibt Untersuchungen über die zellulären Mechanismen, die zur Bildung dieser DNA-Schäden führen, sowie über die biologischen Auswirkungen dieser Schäden. Die Untersuchungen zu Uracil in der DNA wurden in ung-knockout-MEFs und Mäusen durchgeführt, die es erlauben, die Konsequenzen eines Ausfalls der wichtigsten Reparaturglykosylase für Uracil zu beleuchten. Die Ergebnisse zeigen eine deutliche Akkumulation von Uracil in den ung-/--Mausfibroblasten im Vergleich zum Wildtyp. In frisch isolierten Leber- und Milzzellen der Mäuse konnte dieser genotypspezifische Unterschied, wenn auch weniger ausgeprägt, ebenso beobachtet werden, nicht jedoch in reifen Spermien. Dieser gewebespezifische Unterschied und die quantitativ stärker ausgeprägte Akkumulation in ung-/--Mausfibroblasten im Vergleich zu den Mäusegeweben gab Anlass zur Vermutung, dass die Proliferation der Zellen für den Haupteintrag an Uracil in die DNA verantwortlich ist. Erstmals konnte in Versuche mit konfluenten (nicht mehr proliferierenden) ung-/--Mausfibroblasten gezeigt werden, dass nicht die spontane hydrolytische Desaminierung von Cytosin, sondern der Fehleinbau von dUMP während der DNA-Replikation die Hauptquelle für Uracil in der DNA von Säugerzellen darstellt. Da der Uracilmetabolismus ein wichtiges Target in der Chemotherapie ist, lag es nahe, das zur Verfügung stehende ung-knockout-Modell der MEFs zur Untersuchung mit Fluorpyrimidinen, die als Zytostatika verwendet werden, einzusetzen. Da bisher die Ursachen der beobachteten Apoptose der Tumorzellen und aller anderen metabolisch hochaktiven Zellen eines behandelten Organismus noch nicht vollständig verstanden ist, wurden diese Zellen mit verschiedenen Fluorpyrimidinen behandelt, die als Thymidylatsynthasehemmer die de novo Synthese von Thymidin unterbinden. Es konnte gezeigt werden, dass ung-/- Mausfibroblasten, im Gegensatz zu ung+/+ Mausfibroblasten, verstärkt Uracil in der DNA akkumulieren. Obwohl die ung+/+ Mausfibroblasten keine erhöhten Uracil-Spiegel in der DNA aufwiesen, zeigten sie bei Inkubation mit einem der beiden Thymidylatsynthasehemmern, 5-Fluoruracil (5-FU), die gleiche Sensitivität in einem nachfolgenden Proliferationsversuch wie die ung-/- Mausfibroblasten. Dies lässt darauf schließen, dass weder Reparatur noch Einbau von Uracil in die DNA für die beobachtete Toxizität dieser Zytostatika notwendig sind. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung des DNA-schädigenden Potenzials endogener ROS, die aus dem Fremdstoffmetabolismus stammen. Dazu wurden V79-Zellen verwendet, die mit dem humanen Enzym Cytochrom 2E1 (CYP2E1) transfiziert wurden (V79 CYP2E1) sowie Zellen, die ebenfalls durch Transfektion das humane Enzym Cytochromreduktase (auch Oxidoreduktase genannt) überexprimieren (V79 hOR). Beide Enzyme sind zusammen an der Hydroxylierung von Fremdstoffen beteiligt, bei der die Reduktion von molekularem Sauerstoff durch Übertragung von zwei Elektronen notwendig ist. Wird anstatt zweier Elektronen in Folge nur eines auf den Sauerstoff übertragen, so führt dieser von der Substratoxygenierung enkoppelte Vorgang zur Bildung von Superoxid. Daher galt es zu klären, ob das so erzeugte Superoxid und daraus gebildete ROS in der Lage sind, die DNA zu schädigen. Es konnte gezeigt werden, dass die Überexpression von CYP2E1 nicht zu einem erhöhten basalen Gleichgewichtsspiegel oxidativer DNA-Schäden führt und die Metabolisierung von Ethanol durch dieses Enzym ebenfalls keine DNA-Modifikationen verursacht. Die Überexpression der Cytochromreduktase hingegen führte gegenüber dem Wildtyp zu einem erhöhten basalen Gleichgewichtsspiegel oxidativer Basenmodifikationen nach Depletion von Glutathion, einem wichtigen zellulären Antioxidans. Im Mikrokerntest, der gentoxische Ereignisse wie Chromosomenbrüche in Zellen aufzeigt, zeigte sich schon ohne Glutathion-Depletion eine doppelt so hohe Mikrokernrate im Vergleich zum Wildtyp. In weiteren Versuchen wurden die V79-hOR-Zellen mit dem chinoiden Redoxcycler Durochinon inkubiert, um zu untersuchen, ob das vermutlich durch die Reduktase vermittelte Redoxcycling über Generierung von ROS in der Lage ist, einen oxidativen DNA-Schaden und Toxizität zu verursachen. Hier zeigte sich, dass die Überexpression der Reduktase Voraussetzung für Toxizität und den beobachteten DNA-Schaden ist. Die Wildtyp-Zellen zeigten weder einen DNA-Schaden noch Zytotoxizität, auch eine zusätzliche Glutathion-Depletion änderte nichts an dem Befund. Die V79-hOR-Zellen hingegen reagierten auf die Inkubation mit Durochinon mit einer konzentrationsabhängigen Zunahme der Einzelstrangbrüche und oxidativen Basenmodifikationen, wobei sich der DNA-Schaden durch vorherige Glutathion-Depletion verdoppeln ließ.
Resumo:
Die Lichtsammelantenne des PSI (LHCI) ist hinsichtlich ihrer Protein- und Pigmentzusammensetzung weniger gut untersucht als die des PSII. Im Rahmen dieser Arbeit wurde deshalb zunächst die Isolation von nativen LHCI-Subkomplexen optimiert und deren Pigmentzusammensetzung untersucht. Zusätzlich wurde die Pigmentbindung analysiert sowie das Pigment/Protein-Verhältnis bestimmt. Die Analyse der Proteinzusammensetzung des LHCI erfolgte mittels einer Kombination aus ein- oder zweidimensionaler Gelelektrophorese mit Westernblotanalysen mit Lhca-Protein-spezifischen Antikörpern und massenspektrometrischen Untersuchungen. Dabei stellte sich heraus, dass der LHCI mehr Proteine bzw. Proteinisoformen enthält als bisher vermutet. So gelang durch die massenspektrometrischen Untersuchungen die Identifizierung zweier bisher noch nicht nachgewiesener Lhca-Proteine. Bei diesen handelt es sich um eine Isoform des Lhca4 und ein zusätzliches Lhca-Protein, das Tomaten-Homolog des Lhca5 von Arabidopsis thaliana. Außerdem wurden in 1D-Gelen Isoformen von Lhca-Proteinen mit unterschiedlichem elektrophoretischen Verhalten beobachtet. In 2D-Gelen trat zusätzlich eine große Anzahl an Isoformen mit unterschiedlichen isoelektrischen Punkten auf. Es ist zu vermuten, dass zumindest ein Teil dieser Isoformen physiologischen Ursprungs ist, und z.B. durch differentielle Prozessierung oder posttranslationale Modifikationen verursacht wird, wenn auch die Spotvielfalt in 2D-Gelen wohl eher auf die Probenaufbereitung zurückzuführen ist. Mittels in vitro-Rekonstitution mit anschließenden biochemischen Untersuchungen und Fluoreszenzmessungen wurde nachgewiesen, dass Lhca5 ein funktioneller LHC mit spezifischen Pigmentbindungseigenschaften ist. Außerdem zeigten in vitro-Dimerisierungsexperimente eine Interaktion zwischen Lhca1 und Lhca5, wodurch dessen Zugehörigkeit zur Antenne des PSI gestützt wird. In vitro-Dimerisierungsexperimente mit Lhca2 und Lhca3 führten dagegen nicht zur Bildung von Dimeren. Dies zeigt, dass die Interaktion in potentiellen Homo- oder Heterodimeren aus Lhca2 und/oder Lhca3 schwächer ist als die zwischen Lhca1 und Lhca4 oder Lhca5. Die beobachtete Proteinheterogenität deutet daraufhin, dass die Antenne des PSI eine komplexere Zusammensetzung hat als bisher angenommen. Für die Integration „neuer“ LHC in den PSI-LHCI-Holokomplex werden zwei Modelle vorgeschlagen: geht man von einer festen Anzahl von LHCI-Monomeren aus, so kann sie durch den Austausch einzelner LHC-Monomere erreicht werden. Als zweites Szenario ist die Bindung zusätzlicher LHC vorstellbar, die entweder indirekt über bereits vorhandene LHC oder direkt über PSI-Kernuntereinheiten mit dem PSI interagieren. In Hinblick auf die Pigmentbindung der nativen LHCI-Subfraktionen konnte gezeigt werden, dass sie Pigmente in einer spezifischen Stöchiometrie und Anzahl binden, und sich vom LHCIIb vor allem durch eine verstärkte Bindung von Chlorophyll a, eine geringere Anzahl von Carotinoiden und die Bindung von ß-Carotin an Stelle von Neoxanthin unterscheiden. Der Vergleich von nativem LHCI mit rekonstituierten Lhca-Proteinen ergab, dass Lhca-Proteine Pigmente in einer spezifischen Stöchiometrie binden, und dass sie Carotinoidbindungsstellen mit flexiblen Bindungseigenschaften besitzen. Auch über die Umwandlung des an die einzelnen Lhca-Proteine gebundenen Violaxanthins (Vio) im Xanthophyllzyklus war nur wenig bekannt. Deshalb wurden mit Hilfe eines in vitro-Deepoxidationssystems sowohl native als auch rekonstituierte LHCI hinsichtlich ihrer Deepoxidationseigenschaften untersucht und der Deepoxidationsgrad von in vivo deepoxidierten Pigment-Protein-Komplexen bestimmt. Aus den Deepoxidationsexperimenten konnte abgeleitet werden, dass in den verschiedenen Lhca-Proteinen unterschiedliche Carotinoidbindungsstellen besetzt sind. Außerdem bestätigten diese Experimente, dass der Xanthophyllzyklus auch im LHCI auftritt, wobei jedoch ein niedrigerer Deepoxidationsgrad erreicht wird als bei LHCII. Dies konnte durch in vitro-Deepoxidationsversuchen auf eine geringere Deepoxidierbarkeit des von Lhca1 und Lhca2 gebundenen Vio zurückgeführt werden. Damit scheint Vio in diesen Lhca-Proteinen eher eine strukturelle Rolle zu übernehmen. Eine photoprotektive Funktion von Zeaxanthin im PSI wäre folglich auf Lhca3 und Lhca4 beschränkt. Damit enthält jede LHCI-Subfraktion ein LHC-Monomer mit langwelliger Fluoreszenz, das möglicherweise am Lichtschutz beteiligt ist. Insgesamt zeigten die Untersuchungen der Pigmentbindung, der Deepoxidierung und der Fluoreszenzeigenschaften, dass sich die verschiedenen Lhca-Proteine in einem oder mehreren dieser Parameter unterscheiden. Dies lässt vermuten, dass schon durch leichte Veränderungen in der Proteinzusammensetzung des LHCI eine Anpassung an unterschiedliche Licht-verhältnisse erreicht werden kann.
Resumo:
The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.
Resumo:
The challenge of the present work was to synthesize and to characterize new classes of N-containing polymers via palladium-catalyzed aryl amination. This work was inspired by a desire to combine the properties of high-performance polymers such as PEKs with those of N-containing conductive polymers such as polyaniline (PANI), poly(aromatic amides) (PAAs), and the ready synthesis of N-containing simple aromatic compound by the Buchwald-Hartwig reaction. Careful investigation of a model reaction was carried out to provide insights into the formation of side products which will have a negative effect upon the molecular weight or upon the materials properties of the desired polymers in the polycondensation reaction. In this thesis, five new different polymer classes namely, poly(imino ketone)s (PIKs), poly(imino acridine)s (PIAcs), poly(imino azobenzene)s (PIAzos), poly(imino fluorenone)s (PIFOs), and poly(imino carbazole)s (PICs) were synthesized and fully characterized by means of 1H-NMR, elemental analysis, UV, FT-IR, X-ray, GPC, TGA, DSC, DMA, and dielectric spectroscopy. To optimize the polycondensation process, the influence of the concentration, temperature, ligands and the reactivity of the halogen containing monomers were investigated. A temperature of 100-165 °C and a concentration of 30-36 % were found to be optimal for the palladium-catalyzed polycondensation to produce polymer with high molecular weight (Mn = 85 900, Mw = 474 500, DP = 126). Four different ligands were used successfully in the Pd-catalyzed process, of which the Pd/BINAP system was found to be the most effective catalyst, producing the highest yield and highest molecular weight polymers. It was found that the reactivity decreases strongly with increasing electronegativity of the halogen atoms, for example better yields, and higher molecular weights were obtained by using dibromo compounds than dichloro compounds while difluoro compounds were totally unreactive. Polymer analogous transformations, such as the protonation reaction of the ring nitrogens in PIAcs, or of the azobenzene groups of PIAzos, the photo and thermal cis-trans-isomerization of PIAzos, and of poly(imino alcohol)s were also studied. The values of the dielectric constants of PIKs at 1 MHz were in the range 2.71-3.08. These low values of the dielectric constant are lower than that of "H Film", a polyimide Kapton film which is one of the most preferred high-performance dielectrics in microelectronic applications having a dielectric constant of 3.5. In addition to the low values of the dielectric constants, PIKs have lower and glass transition temperatures (Tgs) than arimides such as Kapton which may make them more easily processable. Cyclic voltammetry showed that PICs exhibited low oxidation and reduction potentials and their values were shifted to low values with increasing degree of polymerization i.e. with increasing of the carbazole content in backbone of PICs (PIC-7, 0.44, 0.33 V, DP= 37, PIC-5, 0.63, 0.46, DP= 16, respectively).
Resumo:
ZUSAMMENFASSUNG Die Tauglichkeit von Hybridmaterialien auf der Basis von Zinkphosphathydrat-Zementen zum Einsatz als korrosionshemmende anorganische Pigmente oder zur prothetischen und konservierenden Knochen- und Zahntherapie wird weltweit empirisch seit den neunziger Jahren intensiv erforscht. In der vorliegenden Arbeit wurden zuerst Referenzproben, d.h. alpha-und beta-Hopeite (Abk. a-,b-ZPT) dank eines hydrothermalen Kristallisationsverfahrens in wässerigem Milieu bei 20°C und 90°C hergestellt. Die Kristallstruktur beider Polymorphe des Zinkphosphattetrahydrats Zn3(PO4)2 4 H2O wurde komplett bestimmt. Einkristall-strukturanalyse zeigt, daß der Hauptunterschied zwischen der alpha-und beta-Form des Zinkphosphattetrahydrats in zwei verschiedenen Anordnungen der Wasserstoffbrücken liegt. Die entsprechenden drei- und zweidimensionalen Anordnungen der Wasserstoffbrücken der a-und b-ZPT induzieren jeweils unterschiedliches thermisches Verhalten beim Aufwärmen. Während die alpha-Form ihr Kristallwasser in zwei definierten Stufen verliert, erzeugt die beta-Form instabile Dehydratationsprodukt. Dieses entspricht zwei unabhängigen, aber nebeneinander ablaufenden Dehydratationsmechanismen: (i) bei niedrigen Heizraten einen zweidimensionalen Johnson-Mehl-Avrami (JMA) Mechanismus auf der (011) Ebene, der einerseits bevorzugt an Kristallkanten stattfindet und anderseits von existierenden Kristalldefekten auf Oberflächen gesteuert wird; (ii) bei hohen Heizraten einem zweidimensionalen Diffusionsmechanismus (D2), der zuerst auf der (101) Ebene und dann auf der (110) Ebene erfolgt. Durch die Betrachtung der ZPT Dehydratation als irreversibele heterogene Festkörperstufenreaktion wurde dank eines „ähnlichen Endprodukt“-Protokolls das Dehydratationsphasendiagramm aufgestellt. Es beschreibt die möglichen Zusammenhänge zwischen den verschiedenen Hydratationszuständen und weist auf die Existenz eines Übergangszustandes um 170°C (d.h. Reaktion b-ZPT a-ZPT) hin. Daneben wurde auch ein gezieltes chemisches Ätzverfahren mit verdünnten H3PO4- und NH3 Lösungen angewendet, um die ersten Stufe des Herauslösens von Zinkphosphat genau zu untersuchen. Allerdings zeigen alpha- und beta-Hopeite charakteristische hexagonale und kubische Ätzgruben, die sich unter kristallographischer Kontrolle verbreitern. Eine zuverlässige Beschreibung der Oberfächenchemie und Topologie konnte nur durch AFM und FFM Experimente erfolgen. Gleichzeitig konnte in dieser Weise die Oberflächendefektdichte und-verteilung und die Volumenauflösungsrate von a-ZPT und b-ZPT bestimmt werden. Auf einem zweiten Weg wurde eine innovative Strategie zur Herstellung von basischen Zinkphosphatpigmenten erster und zweiter Generation (d.h. NaZnPO4 1H2O und Na2ZnPO4(OH) 2H2O) mit dem Einsatz von einerseits oberflächenmodifizierten Polystyrolatices (z.B. produziert durch ein Miniemulsionspolymerisationsverfahren) und anderseits von Dendrimeren auf der Basis von Polyamidoamid (PAMAM) beschritten. Die erhaltene Zeolithstruktur (ZPO) hat in Abhängigkeit von steigendem Natrium und Wassergehalt unterschiedliche kontrollierte Morphologie: hexagonal, würfelförmig, herzförmig, sechsarmige Sterne, lanzettenförmige Dendrite, usw. Zur quantitativen Evaluierung des Polymereinbaus in der Kristallstruktur wurden carboxylierte fluoreszenzmarkierte Latices eingesetzt. Es zeigt sich, daß Polymeradditive nicht nur das Wachstum bis zu 8 µm.min-1 reduzierten. Trotzdem scheint es auch als starker Nukleationsbeschleuniger zu wirken. Dank der Koordinationschemie (d.h. Bildung eines sechszentrigen Komplexes L-COO-Zn-PO4*H2O mit Ligandenaustausch) konnten zwei einfache Mechanismen zur Wirkung von Latexpartikeln bei der ZPO Kristallisation aufgezeigt werden: (i) ein Intrakorona- und (ii) ein Extrakorona-Keimbildungsmechanismus. Weiterhin wurde die Effizienz eines Kurzzeit- und Langzeitkorrosionschutzes durch maßgeschneiderte ZPO/ZPT Pigmente und kontrollierte Freisetzung von Phosphationen in zwei Näherungen des Auslösungsgleichgewichts abgeschätzt: (i) durch eine Auswaschungs-methode (thermodynamischer Prozess) und (ii) durch eine pH-Impulsmethode (kinetischer Prozess. Besonders deutlich wird der Ausflösungs-Fällungsmechanismus (d.h. der Metamorphismus). Die wesentliche Rolle den Natriumionen bei der Korrosionshemmung wird durch ein passendes zusammensetzungsabhängiges Auflösungsmodell (ZAAM) beschrieben, das mit dem Befund des Salzsprühteste und der Feuchtigkeitskammertests konsistent ist. Schließlich zeigt diese Arbeit das herausragende Potential funktionalisierter Latices (Polymer) bei der kontrollierten Mineralisation zur Herstellung maßgeschneiderter Zinkphosphat Materialien. Solche Hybridmaterialien werden dringend in der Entwicklung umweltfreundlicher Korrosionsschutzpigmente sowie in der Dentalmedizin benötigt.
Resumo:
Über die Sekundärstruktur von LI-Cadherin ist bislang wenig bekannt. Es gibt keine Röntgenanalysen und keine NMR-spektroskopische Untersuchungen. Man kann nur aufgrund der Sequenzhomologien zu den bereits untersuchten klassischen Cadherinen vermuten, daß im LI-Cadherin ähnliche Verhältnisse in der entscheidenden Wechselwirkungsdomäne vorliegen. In Analogie zum E-Cadherin wurde angenommen, daß es im LI-Cadherin eine „homophile Erkennungsregion“ gibt, die in einer typischen beta-Turn-Struktur mit anschließenden Faltblattbereichen vorliegen sollte. Um den Einfluß verschiedener Saccharid-Antigene auf die Turn-Bildung zu untersuchen, wurden im ersten Teil der vorliegenden Arbeit verschiedene Saccharid-Antigen-Bausteine synthetisiert, mit denen dann im zweiten Teil der Arbeit durch sequentielle Festphasensynthese entsprechende Glycopeptidstrukturen aus dieser Region des LI-Cadherins aufgebaut wurden. Zur Synthese sämtlicher Antigen-Bausteine ging man von D-Galactose aus, die über das Galactal und eine Azidonitratisierung in vier Stufen zum Azidobromid umgesetzt wurde. In einer Koenigs-Knorr-Glycosylierung wurde dieses dann auf die Seitenkette eines geschützten Serin-Derivats übertragen. Reduktion und Schutzgruppenmanipulationen lieferten den TN Antigen-Baustein. Ein TN-Antigen-Derivat war Ausgangspunkt für die Synthesen der weiteren Glycosyl-Serin-Bausteine. So ließ sich mittels der Helferich-Glycosylierung der T Antigen-Baustein herstellen, und der STN-Antigen-Baustein wurde durch eine Sialylierungsreaktion und weitere Schutzgruppenmanipulationen erhalten. Da die Route über das T-Antigen-Derivat den Hauptsyntheseweg für die weiteren komplexeren Antigene bildete, wurden verschiedene Schutzgruppenmuster getestet. Darauf aufbauend ließen sich durch verschiede Glycosylierungsreaktionen und Schutzgruppenmanipulationen der komplexe (2->6)-ST-Antigen-Baustein, (2->3)-Sialyl-T- und Glycophorin-Antigen-Baustein synthetisieren. Im nächsten Abschnitt der Doktorarbeit wurden die synthetisierten Saccharid-Antigen-Serin-Konjugate in Festphasen-Glycopeptidsynthesen eingesetzt. Zunächst wurde ein mit dem TN Antigen glycosyliertes Tricosapeptid hergestellt. Mittels NMR-spektroskopischen Untersuchungen und folgenden Energieminimierungsberechnungen konnte eine dreidimensionale Struktur ermittelt werden. Die Peptidsequenz des Turn-bildenden Bereichs wurde für die folgenden Synthesen gewählt. Die Abfolge der einzelnen Reaktionsschritte für die Festphasensynthesen mit den verschiedenen Saccharid-Antigen-Bausteinen war ähnlich. Insgesamt verlief die Festphasen-Glycopeptidsynthese in starker Abhängigkeit vom sterischen Anspruch der Saccharid-Bausteine. Sämtliche so synthetisierten Glycopeptide wurden NMR spektroskopisch charakterisiert und mittels NOE-Experimenten hinsichtlich ihrer Konformation untersucht. Durch diese Bestimmung der räumlichen Protonen-Protonen-Kontakte konnte mittels Rechnungen zur Energieminimierung, basierend auf MM2 Kraftfeldern, eine dreidimensionale Struktur für die Glycopeptide postuliert werden. Sämtliche synthetisierten Glycopeptide weisen eine schleifenartige Konformation auf. Der Einfluß der Saccharid-Antigene ist unterschiedlich, und läßt sich in drei Gruppen einteilen.
Resumo:
Die Hypersilylgruppe (Me3Si)3Si stellt einen sehr sperrigen, Elektronen liefernden Substituenten dar und kann zur Stabilisierung niedriger Oxidationsstufen sowie ungewöhnlicher Strukturelemente dienen. Durch Reaktionen der base-freien Hypersilanide der Alkalimetalle sowie des Dihypersilylplumbandiyls mit unterschiedlichsten phosphorhaltigen Reagenzien konnten eine Reihe hypersilyl-stabilisierter Phosphor- und Bleicluster-Verbindungen erhalten werden. Kaliumhypersilanid reagiert in Toluol glatt mit weißem Phosphor bei Raumtemperatur in Toluol unter quantitativer Bildung von rotem Kalium-bis(hypersilyl)tetraphosphenid [(Me3Si)3Si]2P4K2 (1), einem Kaliumsalz des Tetraphosphens (Me3Si)3Si-PH-P=P-PH-Si(SiMe3)3. In Benzol oder Toluol steht 1 im Gleichgewicht mit dem dimeren Octaphosphanid [(Me3Si)3Si]4P8K4 (2). Bei längerem Stehen der toluolischen Lösungen zerfällt 1 langsam vermutlich in Folge einer Protolyse zum gelben Pentaphosphanid [(Me3Si)3Si]3P5K2 (4). Aus benzolischer Lösung konnte hingegen ein weiteres Oktaphosphanid, [(Me3Si)3Si]3P8K3 (5), isoliert werden. Führt man die Reaktion Kaliumhypersilanid mit P4 in stärker koordinierenden Lösungsmitteln wie Diethylether durch, so entstehen neben 1 größere Mengen des Triphosphenids [(Me3Si)3Si]2P3K (3); dieses enthält ein Triphosphaallyl-Anion mit partieller P-P-Doppelbindung. Setzt man Lithiumhypersilanid mit weißem Phosphor um, so beobachtet man eine vollständig andere Produktpallette. Als Hauptprodukte lassen Polyphosphane wie beispielsweise [(Me3Si)3Si]2P4 (6) nachweisen, das zu 1 analoge [(Me3Si)3Si]2P4Li2 (7) entsteht nur in vergleichsweise kleinen Mengen. In der Gegenwart von Hexahydro-1,3,5-trimethyl-S-triazin, entsteht aus Lithiumhypersilanid und P4 hingegen im wesentlichen [(Me3Si)3Si]2P3Li (8) neben beträchtlichen Mengen von (Me3Si)4Si. Dessen Bildung erfordert eine Si-Si-Bindungsspaltung im Verlauf der Reaktion. Die Reaktion von Natriumhypersilanid mit P4 verläuft sehr unübersichtlich, das Pentaphosphanid [(Me3Si)3Si]3P5Na2 (9) ist das einzige isolierbare Produkt. Setzt man 1 mit [(Me3Si)2Si]2Sn um, so bilden sich überraschenderweise, je nach verwendetem Solvens [(Me3Si)3Si]3P4SnK (10) oder [(Me3Si)3Si]2[(Me3Si)2N]P4SnK (11). Alle neuen Verbindungen wurden NMR-spektroskopisch charakterisiert, die Phosphenide 1, 7, 8 sowie die Phosphanide 2, 4, 5, 9, 10 darüber hinaus durch Kristallstrukturanalysen. Dihypersilylplumbandiyl und -stannandiyl reagieren bei tiefer Temperatur mit P4, MPH2 (M=Li, K), PMe3, and PH3 zu formalen Lewis-Säure-Base-Addukten. Die Addukte {[(Me3Si)3Si]2PbPH2}M [M = Li (15), K (18)], {{[(Me3Si)3Si]2Pb}2PH2}M [M = Li (19), K (20)], und [(Me3Si)3Si]2EPMe3 [E = Pb (21), Sn (22)] wurden als kristalline Feststoffe erhalten und konnten vollständig charakterisiert werden. Die metastabilen Addukte {[(Me3Si)3Si]2E}4P4 (E = Pb, Sn) und [(Me3Si)3Si]2PbPH3 konnten lediglich NMR-spektroskopisch nachgewiesen werden. Bei Raumtemperatur entstehen in Folge von Ligandenaustausch-Prozessen die kristallographisch charakterisierten Heterokubane [(Me3Si)3Si]4P4E4 [E = Pb (12), Sn (14)], das Diphosphen (Me3Si)3SiP=PSi(SiMe3)3 (13) sowie der Pb2P2-Heterocyclus [(Me3Si)3SiPbP(H)Si(SiMe3)3]2 (17). Bei tiefer Temperatur wird aus einer sehr langsamen Reaktion von Dihypersilylplumbandiyl und PH3 in sehr kleinen Ausbeuten ein weiteres, völlig unerwartetes Produkt gebildet: der Bleicluster [(Me3Si)3Si]6Pb12 (23). Er weist ein verzerrt ikosaedrisches, zentrosymmetrisches Pb12-Gerüst auf. Nach jetzigen Erkenntnissen läuft seine Bildung über das nicht fassbare Hydridoplumbandiyl HPbSi(SiMe3)3, das intermediär durch Substituentenaustausch zwischen Pb[Si(SiMe3)3]2 and PH3 entsteht. Der Ersatz des Phosphans durch andere Hydridquellen wie (Ph3PCuH)6, (iBu)2AlH, and Me3NAlH3 führt ebenfalls zur Bildung von Bleiclustern, allerdings ist jetzt der Cluster [(Me3Si)3Si]6Pb10 (24) das Hauptprodukt. Beide Cluster, 23 und 24, gehorchen den Wade-Regeln.
Resumo:
Kanzerogene polyaromatische Kohlenwasserstoffe (PAKs), wie Benzo[a]pyren, besitzen eine Bay-Region mit ortho-kondensiertem Benzoring. Dadurch ist die enzymatische Bildung von Bay-Region-Dihydrodiolepoxiden (Oxiranylring in der sterisch abgeschirmten Molekülbucht) möglich, die als ultimal kanzerogene Metaboliten der PAKs gelten. Diese lösen durch DNA-Modifikation Primärläsionen aus, die, sofern sie nicht enzymatisch repariert werden, bei der DNA-Replikation Fehler verursachen (Mu-tationen). Der Mehrstufenprozeß der Kanzerogenese (Promotion und Progression) führt schließlich zur neoplastischen Entartung der Zelle. Benzo[ghi]perylen (BghiP) repräsentiert eine Gruppe von PAKs, die keine „klassische“ Bay-Region besitzen und daher keine vicinalen Dihydrodiolepoxiden bilden können. Trotzdem ist BghiP mutagen, z. B. in den Stämmen TA98 und TA100 von Salmonella typhimurium (1,3- bzw. 4,3 his+-Revertanten/nmol) nach metabolischer Aktivierung mit der postmitochondrialen Fraktion von Ratten nach Behandlung mit 3-Methylcholanthren. Hemmung der mikrosomalen Epoxidhydrolase (mEH) mit 1,1,1-Trichlor-2-propenoxid (TCPO) steigert die bakterielle Mutagenität von BghiP im Stamm TA98 um das 4-fache, was Arenoxide als ultimale Mutagene wahrscheinlich macht. Dieses Ergebnis wird au-ßerdem durch Untersuchung der DNA-Bindung mit dem Verfahren des 32P-Postlabelings bestätigt (Dr. Fickler, Institut für Toxikologie, Universität Mainz). Danach bildete mikrosomal aktiviertes BghiP drei Addukte (ein Hauptaddukt, zwei Nebenaddukte), die durch Hemmung der mEH mit TCPO verstärkt wurden (das Hauptaddukt um 29%). Um den für die bakterielle Mutagenität von BghiP verantwortlichen Metaboliten zu identifizieren, wurde die mikrosomale Biotransformaton von BghiP aufgeklärt. Umsetzung von BghiP mit Lebermikrosomen von Ratten nach Behandlung mit Aroclor 1254 lieferte 17 mit Ethylacetat extrahierbare Metaboliten. Zwölf dieser Metaboliten konnten durch eine Kombination von chromatographischen, spektroskopi-schen und biochemischen Methoden identifiziert werden. Daraus ergeben sich zwei Biotransformati-onswege: Weg I beginnt mit einem Angriff von Cytochrom P450-abhängigen Monooxygenasen an Position 7 und der Bildung des 7-Phenols. Dieses wird dann in das 7,8- bzw. 7,10-Diphenol überführt, die schließlich zu den mehrkernigen Chinonen an der 7,8- bzw. 7,10-Position oxidiert werden. Im Bio-transformationsweg II werden die K-Regionen von BghiP durch Cytochrom P450 funktionalisiert. Zu-nächst entstehen das auf indirektem Weg identifizierte 3,4-Oxid und das 3,4,11,12-Bisoxid, die in mikrosomalen Umsetzungen von BghiP nur nach Hemmung der mEH gebildet werden. Enzymatische Hydrolyse des 3,4-Oxides ergibt das trans-3,4-Dihydrodiol, das zum 3,4-Chinon oxidiert wird. Ebenso entsteht aus dem 3,4,11,12-Bisoxid das trans-3,4-trans-11,12-Bisdihydrodiol, aus dem durch Oxidati-on das trans-3,4-Dihydrodiol-11,12-Chinon hervorgeht. Untersuchung der stereoselektiven enzymati-schen Bildung der K-Region-trans-Di¬hydrodiole ergaben eine präferentielle Entstehung der 3R,4R- bzw. 3R,4R,11R,12R-Enantiomere. Untersuchungen der bakteriellen Mutagenität der Hauptmetaboliten 3,4-Dihydrodiol und dem 7-Phenol machte deutlich, dass beide Biotransformationswege I und II von BghiP zur bakteriellen Mutagenität beitragen. Das 7-Phenol aus Weg I ist ein proximales Mutagen, was auch von Phenolen anderer PAKs bekannt ist. Das 3,4-Dihydrodiol aus Weg II wird so schwach zu Mutagenen aktiviert, dass dem vermutlich gebildete 3,4-Dihydrodiol-11,12-oxid keine große Bedeutung als ultimales Mutagen von BghiP zukommt. Die Bestimmung der direkten mutagenen Aktivität (ohne metabolische Aktivierung) der mutmaßlich ultimal mutagenen Arenoxide von BghiP ergab, dass die des 3,4,11,12-Bisarenoxides sehr gering war (1,3 his+-Revertanten/nmol im Stamm TA98). Das 3,4-Oxid hingegen bewirkte einen deutlichen gentoxischen Effekt in den Stämmen TA98 und TA100 (5,5 bzw. 10 his+-Revertanten/nmol). Dies wurde durch die Bestimmung der DNA-Bindung mit dem 32P-Postlabeling, in dem das 3,4-Oxid für das Hauptaddukt von BghiP verantwortlich gemacht werden konnte, bestätigt. Daher kommt dem 3,4-Oxid als ultimales Mutagen die größte Bedeutung für die Gentoxizität von BghiP zu. Die Ergebnisse dieser Arbeit lassen bei PAKs ohne Bay-Region auf Arenoxide schließen, die eine notwendige Voraussetzung für DNA-Bindung und Mutagenität sind.
Resumo:
In dieser Arbeit werden Molekulardynamik-Computersimulationen zur Untersuchung der statischen und dynamischen Eigenschaften einer amorph/kristallinen Siliziumdioxid(SiO2)-Grenzschicht durchgefuehrt.Die Grenzflaeche wird von der [100]-Ebene des beta-Kristobalit-Kristalls und der fluessigen SiO2-Phase gebildet und in einem Temperaturbereich zwischen 2900K und 3100K im Zustand eines metastabilen Gleichgewichts untersucht. Als Modellpotential zur Beschreibung der mikroskopischen Wechselwirkungen zwischen den Teilchen wird ein einfaches Paarpotential aus der Literatur verwendet, das sowohl die Struktur der kristallinen Phase als auch die der fluessigen Phase gut reproduziert. Bezogen auf die Dichte und die potentielle Energie der Teilchen erstreckt sich der Uebergang von der fluessigen in die kristalline Phase ueber 3-5 Atomlagen. Ein Layering-Effekt der Dichte in der fluessigen Phase in der Naehe der Grenzschicht wird nicht beobachtet. Der Einfluss der Grenzschicht auf statische Groessen, welche das System auf einer mittelreichweitigen Laengenskala beschreiben (z. B. Koordinationszahlverteilung und Ringverteilung) reicht im Vergleich dazu weiter in die fluessige Phase hinein und manifestiert sich in Defektstrukturen, wie z. B. der Erhoehung der Wahrscheinlichkeit fuer das Auftreten von 5-fach koordiniertem Silizium und der vermehrten Bildung von 2er-Ringen in der Fluessigkeit. Dies beguenstigt das Aufbrechen und Umklappen von Si-O-Bindungen und fuehrt zu einer Beschleunigung der Dynamik und einer Erhoehung der Diffusionsgeschwindigkeit in der Fluessigkeit. Im weiteren wird die Hochfrequenzdynamik der reinen SiO2-Fluessigkeit untersucht. Dazu berechnen wir die vibratorische Zustandsdichte in harmonischer Naeherung aus der inhaerenten Struktur. Wir finden einen stark ausgepraegten Peak bei einer Frequenz von 0.6 THz. Dieser Peak kann der niederenergetischsten transversalen akustischen Mode zugeordnet werden, die auch als Scherschwingung des Systems direkt sichtbar ist.
Resumo:
Die im Laufe der Evolution konservierte Genfamilie des Amyloid-Vorläufer-Proteins APP beinhaltet sowohl bei der Maus als auch beim Menschen die beiden APP-ähnlichen ProteineAPLP1 und APLP2. Ziel dieser Arbeit war es, die proteolytische Prozessierung des APLP2 zu charakterisieren und die beteiligten Proteasen aufzuzeigen. Ausgehend von Stimulations- und Inhibitionsversuchen wurde die Metzincin-Familie der Metalloproteinasen als APLP2-Proteasen identifiziert. Durch Überexpression von ADAM10 und TACE (ADAM17) konnten zwei wichtige Prozessierungs-Enzyme des APLP2 charakterisiert werden. Damit wurde zum ersten Mal eine α-Sekretase-ähnliche Enzymaktivität analog zu der Spaltung des APP an APLP2 beschrieben. Untersuchungen an ADAM10-transgenen Mäusen bestätigten die proteolytische Prozessierung des APLP2 in vivo. Durch die Untersuchung neuronaler Differenzierung mit Retinsäure und Apoptose in Neuroblastoma-Zellen gelang der Nachweis einer funktionellen Koregulation von APLP2 und seiner Protease ADAM10, die zu einer erhöhten Freisetzung des neurotrophen löslichen APLP2 bei der Differenzierung und zu einer Reduktion bei Apoptose führt. In den Gehirnen von Alzheimer-Patienten gibt es sowohl Hinweise auf einen gestörten Vitamin A Metabolismus als auch auf verstärkte apoptotische Vorgänge, so dass hier erstmalig eine Verknüpfung der APLP2-Proteolyse mit zwei pathogenen Prozessen des Morbus Alzheimergezeigt werden konnten. Eine therapeutische Aktivierung der α-Sekretasen hätte die verstärkte Bildung von neurotrophem APPsα und APLP2s zur Folge. Es bestünde jedoch gleichzeitig die Gefahr von Nebenwirkungen durch die Spaltung weiterer Substrate wie der Notch-Rezeptoren oder des Prionenproteins. In dieser Arbeit konnte gezeigt werden, dass Notch-1 prinzipiell ein Substrat für ADAM10 darstellt, die Auswirkungen in vivo jedoch begrenzt und altersabhängig sind. Für das Prionenprotein ergab sich keine direkte Beeinflussung durch eine Spaltung, sondern vielmehr eine Expressionsminderung durch die Überexpression von ADAM10 in Mäusen. Die Inkubationszeit bei der Prionenerkrankung hängt von der Menge des endogenen zellulären Prionenproteins ab. Daher ergibt sich aus einer Steigerung der α-Sekretase-Aktivität eine potentielle Prävention gegenüber einer Infektion mit der pathogenen Scrapie-Form des Prionenproteins.
Resumo:
In dieser Arbeit wurden durch Verwendung eines stereodifferenzierenden Kohlenhydrat-Auxiliars chirale Stickstoffheterocyclen und enantiomerenreine Piperidin-Alkaloide synthetisiert. Alkaloide mit einer Piperidin-Grundstruktur sind in der Natur weit verbreitet und weisen vielfältige biologische Aktivitäten auf. Zusammen mit synthetischen Derivaten sind sie daher von großem Interesse für die Wirkstoffforschung. Mit dem aus D-Arabinose zugänglichen 2,3,4-Tri-O-pivaloyl-D-arabinosylamin wurden mit hoher Stereoselektivität N-Glycosyl-dehydropiperidinone aufgebaut, die vielfältig modifizierbare Ausgangsverbindungen zur Synthese unterschiedlich substituierter Stickstoffheterocyclen darstellen. In einer Vielzahl vor allem metallorganischer Reaktionen waren regio- und stereoselektive Derivatisierungen an allen Positionen der N-glycosidisch gebundenen Dehydropiperidinone möglich. Durchgeführt wurden z. B. die Addition aktivierter Cuprate, elektrophile Substitutionen, Reduktionen, Iod-Magnesium-Austausch sowie palladium- und kupferkatalysierte Kupplungen. Die Kombination dieser Methoden führte zu mehrfach substituierten Piperidinen. In einer Ringschlussmetathese wurde zudem ein Zugang zu bicyclischen Heterocyclen geschaffen. Das Kohlenhydrat-Auxiliar steuert den stereochemischen Verlauf der Bildung der Dehydropiperidinone und der daran durchgeführten Funktionalisierungen. Die Konfigurationen der neu gebildeten Stereozentren wurden mittels Röntgenstrukturanalysen und NMR-Spektroskopie sowie durch die Überführung der Piperidin-Derivate in Alkaloide mit bekanntem Drehwert ermittelt. Die Stickstoffheterocyclen können nach Entfernen der Enamin-Doppelbindung durch milde Acidolyse vom Kohlenhydrat-Auxiliar abgespalten werden, wodurch man die enantiomerenreinen Alkaloide erhält.
Resumo:
Im Rahmen dieser Arbeit wurde eine Methode entwickelt, Perylendiimidfarbstoffe mit Oligonucleotiden in der Lösung zu verknüpfen. Das Ziel der Arbeit war die nicht-kovalente Synthese von Perylendiimid-DNA- und Protein- supramolekularen Strukturen. Dabei werden die molekularen Erkennungseigenschaften von DNA und Proteinen zunutze gemacht. Insgesamt drei Themenbereiche wurden dabei betrachtet: 1. Synthese und Hybridisierung von symmetrischen und asymmetrischen Perylendiimid-bis(oligonucleotid)-konjugaten für die Bildung supramolekularer Strukturen, 2. Erzeugung von Oberflächenstrukturen auf der Basis von Streptavidin-Perylendiimid-Komplexen, 3. Synthese wasserlöslicher Rylenfarbstoffe für Anwendungen in biologischen Systemen. Zur Synthese und Hybridisierung von Perylendiimid-Oligonucleotid-Konjugaten wurde eine neue Idee verfolgt und erfolgreich realisiert. Dabei handelt es sich um die Synthese von Perylendiimid-DNA-Polymeren durch nicht-kovalente Bindungen. Die Basis des entwickelten Konzepts ist die Ausnutzung der Erkennungseigenschaften der DNA, um Perylendiimidmoleküle in eine lineare Makrostruktur zu organisieren, was sonst nur durch komplizierte chemische Polymersynthese zugänglich wäre. Die Selbstorganisation von zwei komplementären Perylendiimid-bis(oligonucleotid)-konjugaten (PODN1 und PODN2), die an der 5`-Position verknüpft sind, führte zu einem linearen Perylendiimid-DNA-Polymer in der Form von …ABABABAB…., das mit Hilfe von Gelelektrophorese charakterisiert wurde. Eindrucksvoll war auch die erfolgreiche Kopplung des hydrophoben Perylendiimids mit zwei unterschiedlichen Oligonucleotidsequenzen in der Lösung, um asymmetrische Perylendiimid-bis(oligonucleotid)-konjugate zu synthetisieren. Mit solchen asymmetrischen Konjugaten konnte die programmierbare Selbstorganisation der Perylendiimid-Oligonucleotide zu einer definierten Polymerstruktur realisiert werden. Die Synthese von PDI-(biotin)2 wurde vorgestellt. Durch die spezifische Erkennungseigenschaft zwischen Biotin und Streptavidin ist es möglich, eine Oberflächenstruktur zu bilden. Die Immobilisierungsexperimente zeigten, dass das PDI (biotin)2 Streptavidin erkennen und binden kann. Dabei konnte eine multischichtige Nanostruktur (5 Doppelschichten) auf einer Goldoberfläche.
Resumo:
Für die vorliegende Arbeit wurde die chemische Zusammensetzung von natürlichen und anthropogenen Aerosolpartikeln untersucht. Zu diesem Zweck wurde das Aerosolmassenspektrometer (AMS) der Firma Aerodyne, Inc. eingesetzt, womit neben den chemischen Substanzen auch die Massengrößenverteilungen der einzelnen Komponenten der Aerosolpartikel in einem Größenbereich zwischen 20 und 1500 nm quantitativ gemessen werden können. Im Rahmen der HAZE2002-Messkampagne am Meteorologischen Observatorium Hohenpeißenberg wurden die Aerosolpartikel aus natürlichen Quellen untersucht. Diese Partikel bestanden aus Sulfat, Nitrat, Ammonium und organischen Komponenten (Organics). Sulfat, Nitrat und Ammonium wiesen den gleichen Durchmesser auf, was auf eine interne Mischung dieser drei chemischen Substanzen in den Partikeln hinwies. Die Organics hatten einen kleineren Durchmesser, was auf jüngere Partikel hindeutete. Die Analyse der organischen Substanzen in den Aerosolpartikeln zeigte, dass diese zu einem großen Teil aus oxidierten Kohlenwasserstoffen bestanden, die während den Nachmittagsstunden gebildet wurden. Die thermische Abhängigkeit der Bildung von Ammoniumnitrat konnte sowohl gemessen als auch mit Hilfe Konzentrationsberechnungen nach [Seinfeld und Pandis, 1998] nachvollzogen werden. Die gemessene Partikelneubildung konnte auf die ternäre Nukleation aus H2SO4/H2O/NH3 zurückgeführt werden. Aerosolpartikel aus anthropogenen Quellen, wie z.B. der motorischen Verbrennung, wurden während der Messungen in Zusammenarbeit mit dem Ford Forschungszentrum in Aachen (FFA) untersucht. Nukleationspartikel (D 45 nm) konnten bei Experimenten auf dem Rollenprüfstand nur bei einer ausreichend hohen Verdünnung, einem hohen Schwefelgehalt im Kraftstoff und einem hohen Lastzustand nachgewiesen werden. Die Messungen an der Autobahn A4 ergaben eine bimodale Massengrößenverteilung der organischen Partikel, wobei die erste Mode Partikeln aus der motorischen Verbrennungen zugeschrieben werden konnte. Aufgrund der guten Charakterisierung stellt das AMS ein vielseitig einsetzbares Aerosolmessgerät dar, welches in einer hohen Zeitauflösung eine quantitative, größenaufgelöste chemische Analyse der zu messenden Aerosolpartikel bereitstellt.