59 resultados para Potentiodynamic polarisation
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.
Resumo:
Auf dem Gebiet der Teilchenbeschleunigung mittels Hochintensitäts-Lasern wurden in der letzten Dekade viele erfolgreiche Entwicklungen hin zu immer höheren Energien und größeren Teilchenzahlen veröffentlicht. In den meisten Fällen wurde der sogenannte TNSA-Prozess (engl. Target-Normal-Sheath-Acceleration (TNSA)) untersucht. Bei diesem Prozess erfolgt die Beschleunigung in dem an der Oberfläche durch Ladungstrennung erzeugten Potential. Ein kaum vermeidbares Problem ist hierbei das resultierende breite Energie-Spektrum der beschleunigten Teilchen. Diese Situation konnte in den letzten Jahren zwar verbessert, aber nicht vollständig gelöst werden. Für Intensitäten größer 10^(20..21) W/cm^2 sagen theoretische Modellrechnungen eine auf dem Lichtdruck basierende Beschleunigung (engl. Radiation-Pressure-Acceleration (RPA)) mit deutlich eingegrenztem, fast monoenergetischem Spektrum voraus. Im Rahmen dieser Arbeit wurde ein Experiment zur Untersuchung dieses Prozesses bei Intensitäten von einigen 10^19 W/cm^2 durchgeführt. Dazu wurden zunächst spezielle Targets entwickelt und als Patent angemeldet, welche den Experimentbedingungen angepasst sind. Durch die Auslegung des experimentellen Aufbaus und der Diagnostiken auf hohe Repetitionsraten, in Verbindung mit einem geeigneten Lasersystem, konnte auf Basis einer Statistik von mehreren Tausend Schüssen ein großer Parameterraum untersucht werden. Untersucht wurden unter anderem die Abhängigkeit von Targetmaterial und Dicke, Intensität, Laserpolarisation und Vorplasmabedingungen. Aus den gewonnenen Daten und Vergleichen mit 2-dimensionalen numerischen Simulationen konnte ein Modell des Beschleunigungsprozesses aufgestellt und durch Vergleich mit den experimentellen Ergebnissen geprüft werden. Dabei wurden klare Indizien für die Existenz eines neuen, nicht feldinduzierten, Beschleunigungsprozesses gefunden. Darüber hinaus wurde zur Polarisationsbeeinflussung ein optisches System entwickelt, das ausschließlich mit reflexiven Elementen arbeitet. Damit konnten viele Nachteile bestehender, auf Verzögerungsplatten beruhender Elemente vermieden, und die Anwendbarkeit bei hohen Laserenergien erreicht werden.
Resumo:
A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.
Parahydrogen induced polarization on a clinical MRI system : polarization transfer of two spin order
Resumo:
Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.
Resumo:
In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn
Resumo:
Das Institut für Kernphysik der Universität Mainz betreibt seit 1990 eine weltweit einzigartige Beschleunigeranlage für kern- und teilchenphysikalische Experimente – das Mainzer Mikrotron (MAMI-B). Diese Beschleunigerkaskade besteht aus drei Rennbahn-Mikrotrons (RTMs) mit Hochfrequenzlinearbeschleunigern bei 2.45 GHz, mit denen ein quasi kontinuierlicher Elektronenstrahl von bis zu 100 μA auf 855MeV beschleunigt werden kann.rnrnIm Jahr 1999 wurde die Umsetzung der letzten Ausbaustufe – ein Harmonisches Doppelseitiges Mikrotron (HDSM, MAMI-C) – mit einer Endenergie von 1.5 GeV begonnen. Die Planung erforderte einige mutige Schritte, z.B. Umlenkmagnete mit Feldgradient und ihren daraus resultierenden strahloptischen Eigenschaften, die einen großen Einfluss auf die Longitudinaldynamik des Beschleunigers haben. Dies erforderte die Einführung der „harmonischen“ Betriebsweise mit zwei Frequenzen der zwei Linearbeschleuniger.rnrnViele Maschinenparameter (wie z.B. HF-Amplituden oder -Phasen) wirken direkt auf den Beschleunigungsprozess ein, ihre physikalischen Größen sind indes nicht immer auf einfache Weise messtechnisch zugänglich. Bei einem RTM mit einer verhältnismäßig einfachen und wohldefinierten Strahldynamik ist das im Routinebetrieb unproblematisch, beim HDSM hingegen ist schon allein wegen der größeren Zahl an Parametern die Kenntnis der physikalischen Größen von deutlich größerer Bedeutung. Es gelang im Rahmen dieser Arbeit, geeignete Methoden der Strahldiagnose zu entwickeln, mit denen diese Maschinenparameter überprüft und mit den Planungsvorgaben verglichen werden können.rnrnDa die Anpassung des Maschinenmodells an eine einzelne Phasenmessung aufgrund der unvermeidlichen Messfehler nicht immer eindeutige Ergebnisse liefert, wird eine Form der Tomographie verwendet. Der longitudinale Phasenraum wird dann in Form einer Akzeptanzmessung untersucht. Anschließend kann ein erweitertes Modell an die gewonnene Datenvielfalt angepasst werden, wodurch eine größere Signifikanz der Modellparameter erreicht wird.rnrnDie Ergebnisse dieser Untersuchungen zeigen, dass sich der Beschleuniger als Gesamtsystem im Wesentlichen wie vorhergesagt verhält und eine große Zahl unterschiedlicher Konfigurationen zum Strahlbetrieb möglich sind – im Routinebetrieb wird dies jedoch vermieden und eine bewährte Konfiguration für die meisten Situationen eingesetzt. Das führt zu einer guten Reproduzierbarkeit z.B. der Endenergie oder des Spinpolarisationswinkels an den Experimentierplätzen.rnrnDie Erkenntnisse aus diesen Untersuchungen wurden teilweise automatisiert, so dass nun den Operateuren zusätzliche und hilfreiche Diagnose zur Verfügung steht, mit denen der Maschinenbetrieb noch zuverlässiger durchgeführt werden kann.
Resumo:
Die Deposition von dünnen, metallischen Schichten auf Silizium-Substraten stellt bereits seit Jahrzehnten die wichtigste Möglichkeit dar, um die wachsenden Anforderungen der Speichertechnologien zu erfüllen. Obwohl Multilagenstrukturen aus oxidischen Schichten eine nahezu unerschöpfliche Vielfalt an neuen Effekten bieten, kommen diese aktuell nur in Nischenanwendungen zum Einsatz. Der Fokus dieser Arbeit liegt auf dem Verständnis von Phänomenen, die nur an Grenzflächensystemen zu beobachten sind. Die Basis der Untersuchungen stellten die Präparation der Multilagenstrukturen durch Laserablation dar. Eine Untersuchung der strukturellen Eigenschaften von multiferroischen BiFeO3 (BFO)-Schichten erlaubte eine Analyse der Wachstumsmodi und der Symmetrie der Einheitszelle von BFO unter heteroepitaktischer Verspannung. Durch Piezokraftmikroskopie konnte die ferroelektrische Domänenstruktur dünner BFO-Schichten analysiert werden. Die Abbildung der magnetischen Domänenstruktur der ferromagnetischen La0,67Sr0,33MnO3 (LSMO)-Schicht und der antiferromagnetischen BFO-Schicht einer Bilagenstruktur durch Photoemissionselektronenmikroskopie erlaubte eine Analyse der Austauschkopplung an der Grenzfläche. Durch elektronische Rekonstruktion entsteht an der LaAlO3 (LAO) /SrTiO3 (STO)-Grenzfläche ein leitfähiger, quasi-zweidimensionaler Zustand. Dessen Transporteigenschaften wurden mit einem Schwerpunkt auf deren Beeinflussung durch ein elektrisches Feld charakterisiert. Diese Ergebnisse führten zur Implementierung einer ferroelektrischen BFO-Schicht zur Manipulation der Leitfähigkeit an der LAO/STO-Grenzfläche. Die Kontrolle des Widerstandes eines mikrostrukturierten Bereichs durch die Polarisation der BFO-Schicht erlaubt die Nutzung der Struktur als Speichertechnologie.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5 − 10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is considered to be an indication for physics beyond the Standard Model. We present a calculation of the connected part of the hadronic vacuum polarisation using lattice QCD. Partially twisted boundary conditions lead to a significant improvement of the vacuum polarisation in the region of small momentum transfer, which is crucial in the extraction of the hadronic vacuum polarisation.
Resumo:
Im Jahr 1996 wurde die erste Aufnahme der menschlichen Lunge in einem Kernspintomographen unter Benutzung des hyperpolarisierten Edelgases ³He als Kontrastgas veröffentlicht. Es folgten zahlreiche medizinische Studien mit diesem neuen Lungenbildgebungsverfahren. Als Konsequenz aus dem steigenden Bedarf an hyperpolarisiertem ³He wurde am Institut für Physik der Universität Mainz ein ³He-Polarisator entwickelt, der die Versorgung dieser Studien mit polarisiertem Gas gewährleistet. Für den Fall jedoch, dass die Lungenbildgebung mit hyperpolarisiertem ³He in die medizinische Praxis übernommen wird, wären die Produktionskapazitäten der bestehenden Anlage nicht mehr ausreichend. Daher wurde im Rahmen dieser Arbeit ein kompaktes System zum Polarisieren von ³He direkt am Einsatzort entwickelt, welches als eine Art Industrieprodukt in beliebiger Stückzahl nachgebaut werden kann. So steht nun ein kompakter, mobiler ³He Polarisator zur Verfügung, dessen Produktionsrate in der Größenordnung eines Standardliters (1 l, 1 bar, Raumtemperatur) pro Stunde bei einer Polarisation von > 60% liegt.
Resumo:
This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ
Resumo:
Seit seiner Entdeckung im Jahre 1978 wurden für hyperpolarisiertes (HP) 129Xe zahlreiche Anwendungen gefunden. Aufgrund seiner hohen Verstärkung von NMR-Signalen wird es dabei typischerweise für Tracer- und Oberflächenstudien verwendet. Im gasförmigen Zustand ist es ein interessantes, klinisches Kontrastmittel, welches für dynamische Lungen MRT genutzt oder auch in Blut oder lipophilen Flüssigkeiten gelöst werden kann. Weiterhin findet HP-Xe auch in der Grundlagenphysik in He-Xe Co-Magnetometern Verwendung, mit welchen z. B. das elektrische Dipolmoment von Xe bestimmt werden soll, oder es dient zur Überprüfung auf Lorentz-Invarianzen. Alle diese Anwendungen profitieren von einem hohen Polarisationsgrad (PXe), um hohe Signalstärken und lange Lagerzeiten zu erreichen. rnIn dieser Arbeit wurden zwei mobile Xe-Polarisatoren konstruiert: einer für Experimente in der Grundlagenphysik mit einer Produktionsrate von 400 mbar·l/h mit PXe ≈ 5%. Der zweite Xe-Polarisator wurde für medizinische Anwendungen entwickelt und soll 1 bar l/h mit PXe > 20% erzeugen. Der letztere wurde noch nicht getestet. Die Arbeitsbedingungen des Xe-Polarisators für Grundlagenphysik (Strömung des Gasgemischs, Temperatur, Druck und Konzentration von Xe) wurden variiert, um einen höchstmöglichen Polarisationsgrad zu erzielen. Die maximale Polarisation von 5,6 % wurde bei Verwendung eine Gasmischung von 1% Xe bei einem Durchfluss von 200 ml/min, einer Temperatur von 150°C und einem Gesamtdruck von 4 bar erreicht. rnWeiterhin muss HP-Xe auch effizient gelagert werden, um Polarisationsverluste zu minimieren. Das ist besonders für solche Anwendungen notwendig, welche an einem entfernten Standort durchgeführt werden sollen oder auch wenn lange Spinkohärenzeiten gefordert sind, z.B. bei He-Xe Co-Magnetometern. rnHierbei bestand bisher die größte Schwierigkeit darin, die Reproduzierbarkeit der gemessenen Lagerzeiten sicherzustellen. In dieser Arbeit konnte die Spin-Gitter-Relaxationszeit (T1) von HP-129Xe in unbeschichteten, Rb-freien, sphärischen Zellen aus Aluminiumsilikatglas (GE-180) signifikant verbessert werden. Die T1–Zeit wurde in einem selbstgebauten Niederfeld-NMR-System (2 mT) sowohl für reines HP-Xe als auch für HP-Xe in Mischungen mit N2, SF6 und CO2 bestimmt. Bei diesen Experimenten wurde die maximale Relaxationszeit für reines Xe (85% 129 Xe) bei (4,6 ± 0,1) h festgestellt. Dabei lagen die typischen Wand-Relaxationszeiten bei ca. 18 h für Glaszellen mit einem Durchmesser von 10 cm. Des Weiteren wurde herausgefunden, dass CO2 eine unerwartet hohe Effizienz bei der Verkürzung der Lebensdauer der Xe-Xe Moleküle zeigte und somit zu einer deutlichen Verlängerung der gesamten T1-Zeit genutzt werden kann. rnIm Verlauf vieler Experimente wurde durch wiederholte Messungen mit der gleichen Zelle, ein "Alterungsprozess“ bei der Wandrelaxation identifiziert und untersucht. Dieser Effekt könnte leicht rückgängig gemacht werden, indem die anfängliche Reinigungsprozedur wiederholt wurde. Auf diese Weise kann eine konstante Wandrelaxation sichergestellt werden, durch die sehr reproduzierbare T1-Messungen möglich werden. rnSchließlich wurde die maximale Relaxationszeit für HP-Xe mit natürlicher Häufigkeit in Mischungen mit SF6 bestimmt. Überraschenderweise war dieser Wert um ca. 75% niedriger als der Wert für Xenon, das zu 85% mit 129Xe angereichert war. Dieser Effekt wurde durch drei unabhängige Experimente bestätigt, da er nicht von der bestehenden Theorie der Xe-Relaxation ableitbar ist. rnDie Polarisation von HP-Xe, PXe, wird normalerweise durch den Vergleich der NMR-Signale des HP-Xe mit einer thermischen polarisierten Probe (z. B. 1H2O oder Xe) bestimmt. Dabei beinhaltet der Vergleich unterschiedlicher Messungen an verschiedenen Proben (unterschiedlicher Druck, Signalintensität und Messverfahren) viele experimentelle Unsicherheiten, welche sich oft nicht leicht bestimmen lassen. Eine einfache, genaue und kostengünstige Methode zur Bestimmung von PXe durch eine direkte Messung der makroskopischen Magnetisierung in einem statischen Magnetfeld vermeidet alle diese Unsicherheiten. Dieses Verfahren kann Polarisationen von > 2 % mit einer Genauigkeit von maximal 10% fast ohne Polarisationsverlust bestimmen. Zusätzlich kann diese Methode ohne weitere Änderungen auch für Bestimmungen des Polarisationsgrades anderer HP-Gase verwendet werden.rn
Resumo:
Diese Arbeit beschreibt die Entwicklung, Konstruktion und Untersuchung eines Magnetometers zur exakten und präzisen Messung schwacher Magnetfelder. Diese Art von Magnetometer eignet sich zur Anwendung in physikalischen hochpräzisions Experimenten wie zum Beispiel der Suche nach dem elektrischen Dipolmomentrndes Neutrons. Die Messmethode beruht auf der gleichzeitigen Detektion der freien Spin Präzession Kern-Spin polarisierten 3He Gases durch mehrere optisch gepumpte Cäsium Magnetometer. Es wird gezeigt, dass Cäsium Magnetometer eine zuverlässige und vielseitige Methode zur Messung der 3He Larmor Frequenz und eine komfortable Alternative zur Benutzung von SQUIDs für diesen Zweck darstellen. Ein Prototyp dieses Magnetometers wurde gebaut und seine Funktion in der magnetisch abgeschirmten Messkabine der Physikalisch Technischen Bundesanstalt untersucht. Die Sensitivität des Magnetometers in Abhängigkeitrnvon der Messdauer wurde experimentell untersucht. Es wird gezeigt, dass für kurze Messperioden (< 500s) Cramér-Rao limitierte Messungen möglich sind während die Sensitivität bei längeren Messungen durch die Stabilität des angelegten Magnetfeldes limitiert ist. Messungen eines 1 muT Magnetfeldes mit einer relative Genauigkeit von besser als 5x10^(-8) in 100s werden präsentiert. Es wird gezeigt, dass die Messgenauigkeit des Magnetometers durch die Zahl der zur Detektion der 3He Spin Präzession eingesetzten Cäsium Magnetometer skaliert werden kann. Prinzipiell ist dadurch eine Anpassung der Messgenauigkeit an jegliche experimentellen Bedürfnisse möglich. Es wird eine gradiometrische Messmethode vorgestellt, die es erlaubt den Einfluss periodischerrnmagnetischer Störungen auf dieMessung zu unterdrücken. Der Zusammenhang zwischen der Sensitivität des kombinierten Magnetometers und den Betriebsparametern der Cäsium Magnetometer die zur Spin Detektion verwendet werden wird theoretisch untersucht und anwendungsspezifische Vor- und Nachteile verschiedener Betriebsartenwerden diskutiert. Diese Zusammenhänge werden in einer Formel zusammengefasst die es erlaubt, die erwartete Sensitivität des Magnetometers zu berechnen. Diese Vorhersagen befinden sich in perfekter Übereinstimmung mit den experimentellen Daten. Die intrinsische Sensitivität des Magnetometer Prototyps wird auf Basis dieser Formel theoretisch bestimmt. Ausserdem wird die erwartete Sensitivität für die Anwendung im Rahmen des Experiments der nächsten Generation zur Bestimmung des elektrischenrnDipolmoments des Neutrons am Paul Scherrer Institut abgeschätzt. Des weiteren wird eine bequeme experimentelle Methode zur Messung des Polarisationsgrades und des Rabi Flip-Winkels der 3He Kernspin Polarisation vorgestellt. Letztere Messung ist sehr wichtig für die Anwendung in hochpräzisions Experimenten.