640 resultados para Informatik
Resumo:
Die A4-Kollaboration am Mainzer Mikrotron MAMI erforscht die Struktur des Protons mit Hilfe der elastischen Streuung polarisierter Elektronen an unpolarisiertem Wasserstoff. Bei longitudinaler Polarisation wird die paritätsverletzende Asymmetrie im Wirkungsquerschnitt gemessen, die Aufschluss über den Strangeness-Beitrag zu den Vektor-Formfaktoren des Protons gibt. Insbesondere wurde eine Messung für Rückwärtsstreuwinkel bei einer Elektronenstrahlenergie von 319 MeV durchgeführt, die zusammen mit einem unter Vorwärtsstreuung bei gleichem Impulsübertrag bestimmten Wert die Separation der magnetischen und elektrischen Strangeness-Formfaktoren erlaubt. Im Rahmen der vorliegenden Arbeit wurde ein Elektroniksystem zur Energiemessung und Histogrammierung der auftretenden Einzelereignisse aufgebaut, das eine vernetzte Struktur aus 1022 Einzelkanälen besitzt und zur Verarbeitung einer Gesamtereignisrate von 100 MHz ausgelegt wurde. Für den experimentellen Betrieb wurden für alle Kanäle erforderliche Qualitäts-prüfungen und Eichmessungen vorgenommen. Die volle Funktionsfähigkeit des Systems zur Durchführung eines Zählratenexperiments für die paritätsverletzende Asymmetrie im Bereich von 10^{-6} wurde demonstriert. Um den bei rückwärtigen Streuwinkeln dominierenden inelastischen Untergrund an Photonen in den Spektren zu reduzieren, wurde das System außerdem um ein Taggersystem für Elektronen erweitert. Das Ergebnis einer vorläufigen Analyse für die paritätsverletzende Asymmetrie im Streuquerschnitt von longitudinal polarisierten Elektronen an unpolarisierten Protonen unter Rückwärtsstreuung bei einem Viererimpulsübertrag Q^2 = 0.23 GeV^2/c^2 beträgt A{PV}=(-16.37 +- 0.93 {stat} +- 0.69 {syst}) ppm. Für die Differenz der gemessenen Asymmetrie A{PV} und der theoretischen Vorhersage ohne Strangeness A{0}=(-16.27 +- 1.22) ppm ergibt sich A{S}= A{PV} - A{0} = (-0.10+-1.68) ppm. Mit dem bereits vorliegenden Wert der Vorwärtsstreuung von A{PV} = (-5.59+- 0.57 {stat} +- 0.29 {syst}) ppm kann ein Wert für den magnetischen bzw. elektrischen Formfaktor von G{M}^s = -0.01+- 0.15 bzw. G{E}^s = 0.034 +- 0.050 ermittelt werden.
Resumo:
In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSIC–type reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.
Resumo:
„Risikomaße in der Finanzmathematik“ Der Value-at -Risk (VaR) ist ein Risikomaß, dessen Verwendung von der Bankenaufsicht gefordert wird. Der Vorteil des VaR liegt – als Quantil der Ertrags- oder Verlustverteilung - vor allem in seiner einfachen Interpretierbarkeit. Nachteilig ist, dass der linke Rand der Wahrscheinlichkeitsverteilung nicht beachtet wird. Darüber hinaus ist die Berechnung des VaR schwierig, da Quantile nicht additiv sind. Der größte Nachteil des VaR ist in der fehlenden Subadditivität zu sehen. Deswegen werden Alternativen wie Expected Shortfall untersucht. In dieser Arbeit werden zunächst finanzielle Risikomaße eingeführt und einige ihre grundlegenden Eigenschaften festgehalten. Wir beschäftigen uns mit verschiedenen parametrischen und nichtparametrischen Methoden zur Ermittlung des VaR, unter anderen mit ihren Vorteilen und Nachteilen. Des Weiteren beschäftigen wir uns mit parametrischen und nichtparametrischen Schätzern vom VaR in diskreter Zeit. Wir stellen Portfoliooptimierungsprobleme im Black Scholes Modell mit beschränktem VaR und mit beschränkter Varianz vor. Der Vorteil des erstens Ansatzes gegenüber dem zweiten wird hier erläutert. Wir lösen Nutzenoptimierungsprobleme in Bezug auf das Endvermögen mit beschränktem VaR und mit beschränkter Varianz. VaR sagt nichts über den darüber hinausgehenden Verlust aus, während dieser von Expected Shortfall berücksichtigt wird. Deswegen verwenden wir hier den Expected Shortfall anstelle des von Emmer, Korn und Klüppelberg (2001) betrachteten Risikomaßes VaR für die Optimierung des Portfolios im Black Scholes Modell.
Resumo:
This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
Die regionale Bestimmung der Durchblutung (Perfusion) ermöglicht differenzierte Aussagen über den Gesundheitszustand und die Funktionalität der Lunge. Durch neue Messverfahren ermöglicht die Magnetresonanztomographie (MRT) eine nicht-invasive und strahlungsfreie Untersuchung der Perfusion. Obwohl die Machbarkeit qualitativer MRT-Durchblutungsmessungen bereits gezeigt wurde, fehlt bisher eine validierte quantitative Methode. Ziel dieser Arbeit war eine Optimierung der bestehenden Messprotokolle und mathematischen Modelle zur Absolutquantifizierung der Lungenperfusion mit Magnetresonanztomographie. Weiterhin sollte die Methodik durch Vergleich mit einem etablierten Referenzverfahren validiert werden. Durch Simulationen und Phantommessungen konnten optimale MRT-Messparameter und ein standardisiertes Protokoll festgelegt werden. Des Weiteren wurde eine verallgemeinerte Bestimmung der Kontrastmittelkonzentration aus den gemessenen Signalintensitäten vorgestellt, diskutiert und durch Probandenmessungen validiert. Auf der Basis dieser Entwicklungen wurde die MRT-Durchblutungsmessung der Lunge tierexperimentell mit der Positronenemissionstomographie (PET) intraindividuell verglichen und validiert. Die Ergebnisse zeigten nur kleine Abweichungen und eine statistisch hochsignifikante, stark lineare Korrelation. Zusammenfassend war es durch die Entwicklungen der vorgestellten Arbeit möglich, die kontrastmittelgestützte MRT-Durchblutungsmessung der Lunge zu optimieren und erstmals zu validieren.
Resumo:
This PhD thesis is embedded into the DFG research project SAMUM, the Saharan Mineral Dust Experiment which was initiated with the goal to investigate the optical and microphysical properties of Saharan dust aerosol, its transport, and its radiative effect. This work described the deployment of the Spectral Modular Airborne Radiation Measurement SysTem (SMART-Albedometer) in SAMUM after it has been extended in its spectral range. The SAMUM field campaign was conducted in May and June 2006 in south-eastern Morocco. At two ground stations and aboard two aircraft various measurements in an almost pure plume of Saharan dust were conducted. Airborne measurements of the spectral upwelling and downwelling irradiance are used to derive the spectral surface albedo in its typical range in the experiment region. Typical spectral types are presented and compared to the surface albedo derived from MISR satellite data. Furthermore, the radiative forcing of the observed Saharan dust is estimated in dependence on the surface albedo and its regional variations. A strong dependence of the radiative forcing not only on the surface albedo, but also on the optical properties of the dust aerosol is observed. It is unique to SAMUM that all these influential parameters have been measured in near-source Saharan dust, which made the calculations shown in this work possible.
Resumo:
This thesis describes experiments which investigate ultracold atom ensembles in an optical lattice. Such quantum gases are powerful models for solid state physics. Several novel methods are demonstrated that probe the special properties of strongly correlated states in lattice potentials. Of these, quantum noise spectroscopy reveals spatial correlations in such states, which are hidden when using the usual methods of probing atomic gases. Another spectroscopic technique makes it possible to demonstrate the existence of a shell structure of regions with constant densities. Such coexisting phases separated by sharp boundaries had been theoretically predicted for the Mott insulating state. The tunneling processes in the optical lattice in the strongly correlated regime are probed by preparing the ensemble in an optical superlattice potential. This allows the time-resolved observation of the tunneling dynamics, and makes it possible to directly identify correlated tunneling processes.
Resumo:
The optical resonances of metallic nanoparticles placed at nanometer distances from a metal plane were investigated. At certain wavelengths, these “sphere-on-plane” systems become resonant with the incident electromagnetic field and huge enhancements of the field are predicted localized in the small gaps created between the nanoparticle and the plane. An experimental architecture to fabricate sphere-on-plane systems was successfully achieved in which in addition to the commonly used alkanethiols, polyphenylene dendrimers were used as molecular spacers to separate the metallic nanoparticles from the metal planes. They allow for a defined nanoparticle-plane separation and some often are functionalized with a chromophore core which is therefore positioned exactly in the gap. The metal planes used in the system architecture consisted of evaporated thin films of gold or silver. Evaporated gold or silver films have a smooth interface with their substrate and a rougher top surface. To investigate the influence of surface roughness on the optical response of such a film, two gold films were prepared with a smooth and a rough side which were as similar as possible. Surface plasmons were excited in Kretschmann configuration both on the rough and on the smooth side. Their reflectivity could be well modeled by a single gold film for each individual measurement. The film has to be modeled as two layers with significantly different optical constants. The smooth side, although polycrystalline, had an optical response that was very similar to a monocrystalline surface while for the rough side the standard response of evaporated gold is retrieved. For investigations on thin non-absorbing dielectric films though, this heterogeneity introduces only a negligible error. To determine the resonant wavelength of the sphere-on-plane systems a strategy was developed which is based on multi-wavelength surface plasmon spectroscopy experiments in Kretschmann-configuration. The resonant behavior of the system lead to characteristic changes in the surface plasmon dispersion. A quantitative analysis was performed by calculating the polarisability per unit area /A treating the sphere-on-plane systems as an effective layer. This approach completely avoids the ambiguity in the determination of thickness and optical response of thin films in surface plasmon spectroscopy. Equal area densities of polarisable units yielded identical response irrespective of the thickness of the layer they are distributed in. The parameter range where the evaluation of surface plasmon data in terms of /A is applicable was determined for a typical experimental situation. It was shown that this analysis yields reasonable quantitative agreement with a simple theoretical model of the sphere-on-plane resonators and reproduces the results from standard extinction experiments having a higher information content and significantly increased signal-to-noise ratio. With the objective to acquire a better quantitative understanding of the dependence of the resonance wavelength on the geometry of the sphere-on-plane systems, different systems were fabricated in which the gold nanoparticle size, type of spacer and ambient medium were varied and the resonance wavelength of the system was determined. The gold nanoparticle radius was varied in the range from 10 nm to 80 nm. It could be shown that the polyphenylene dendrimers can be used as molecular spacers to fabricate systems which support gap resonances. The resonance wavelength of the systems could be tuned in the optical region between 550 nm and 800 nm. Based on a simple analytical model, a quantitative analysis was developed to relate the systems’ geometry with the resonant wavelength and surprisingly good agreement of this simple model with the experiment without any adjustable parameters was found. The key feature ascribed to sphere-on-plane systems is a very large electromagnetic field localized in volumes in the nanometer range. Experiments towards a quantitative understanding of the field enhancements taking place in the gap of the sphere-on-plane systems were done by monitoring the increase in fluorescence of a metal-supported monolayer of a dye-loaded dendrimer upon decoration of the surface with nanoparticles. The metal used (gold and silver), the colloid mean size and the surface roughness were varied. Large silver crystallites on evaporated silver surfaces lead to the most pronounced fluorescence enhancements in the order of 104. They constitute a very promising sample architecture for the study of field enhancements.
Resumo:
The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.
Resumo:
In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.
Resumo:
In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.
Resumo:
For the detection of hidden objects by low-frequency electromagnetic imaging the Linear Sampling Method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfills the assumptions for the fully justified variant of the Linear Sampling Method, the so-called Factorization Method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds.
Resumo:
In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.
Resumo:
We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.