19 resultados para enterotoxigenic Escherichia coli
Funktion der C 4-Dicarboxylat-Transporter DctA und DcuB als Co-Sensoren von DcuS in Escherichia coli
Resumo:
Escherichia coli kann C4-Dicarboxylate sowohl unter aeroben als auch unter anaeroben Bedingungen zur Energiekonservierung nutzen. Die Synthese der beteiligten Transporter und Enzyme wird auf der Transkriptionsebene durch das Zweikomponentensystem DcuSR reguliert. DcuS ist der Sensor für C4-Dicarboxylate. Der Antwortregulator DcuR wird von DcuS aktiviert und induziert die Expression des C4-Dicarboxylat-Transporters DctA unter aeroben Verhältnissen. Anaerob verstärkt DcuSR die Expression des Fumarat/Succinat-Antiporters DcuB, der Fumarase B und der Fumaratreduktase FrdABCD. DctA und DcuB agieren als Co-Sensoren von DcuS und üben einen negativen Effekt auf die Genexpression von dctA bzw. dcuB aus.rnIn dieser Arbeit wurde die Funktion von DctA und DcuB als Co-Sensoren von DcuS untersucht. Sowohl für DcuB als auch für DctA wurde eine direkte Protein-Protein-Interaktion mit DcuS über ein bakterielles Two-Hybrid System nachgewiesen. DcuS bildete ein Transporter-Sensor-Cluster mit DctA und DcuB. C-terminale Verkürzung und die Mutagenese einzelner Aminosäuren der C-terminalen Helix 8b von DctA führten zu einem Verlust der Interaktion mit DcuS. Mit dieser Interaktion gingen sowohl die regulatorische Funktion als auch die Transportfunktion der Punktmutante DctA-L414A verloren. Ein Verlust der Interaktion wurde ebenfalls zwischen einer konstitutiv aktiven DcuS-Mutante und wildtypischem DctA beobachtet. Ebenso zeigte sich eine partielle Reduktion der Interaktion von DcuS mit DctA, wenn DcuS nach der zweiten Transmembranhelix verkürzt wurde. Die Interaktion zwischen DcuS und DctA wurde durch den Effektor Fumarat modifiziert, ging aber nicht komplett verloren.rnDctA konnte in verschiedenen Plasmidsystemen überproduziert werden und bildete Homotrimere. Die Topologie von DctA wurde mit experimentellen und in silico Methoden aufgeklärt. DctA ähnelt der Struktur und Topologie des Aminosäuretransporters Glt aus Pyrococcus horikoshii. DctA besitzt acht Transmembranhelices mit einem cytosolischen N- und C-Terminus sowie zwei Haarnadelschleifen. Die Substratbindung findet höchstwahrscheinlich in den Haarnadelschleifen statt und der Transport erfolgt nach dem „alternating access“ Modell.rnAußerdem wurde die Funktion des Transporters YfcC untersucht. Das Gen yfcC wurde mit Schlüsselgenen des Acetatstoffwechsels co-transkribiert. In yfcC-Deletionsstämmen zeigte sich ein stammspezifischer Defekt bei Wachstum mit Acetat und Transport von Acetat.
Resumo:
Die Bioverkapselung ist eine faszinierende Methode, um biologische Materialien einschließlich Zellen in Siliziumdioxid, Metalloxiden oder hybriden Sol-Gel-Polymeren zu immobilisieren. Bisher wurde nur die Sol-Gel-Vorläufertechnologie genutzt, um Bakterien- oder Hefezellen in Siliziumdioxid zu immobilisieren. Hierfür wurden verschiedene Reagenzien als wässrige Vorläufer getestet, um poly(Silicate) auf Biomolekülen (Bhatia et al., 2000) oder Zellen (Liu und Chen 1999; Coradin und Livage, 2007) zu bilden. Einer der erfolgreichsten bisherigen Methoden verwendet eine Mischung aus Silicaten und kolloidalem Silica. Diese initialen Vorläufer werden durch die Zugabe von Salzsäure neutralisiert, was die Gelbildung fortschreiten lässt und die Verkapselung von Bakterien in einem Silica-Netzwerk zur Folge hat (Nassif et al., 2003). Mit der Entdeckung von Silicatein, einem Enzym, das aus Demospongien isoliert wurde und die Bildung von poly(Silicat) katalysiert, wurde es möglich, poly(Silicat) unter physiologischen Bedingungen zu synthetisieren. Silicatein wurde rekombinant in E. coli hergestellt und ist in der Lage, bei Raumtemperatur, neutralem pH-Wert und in wässrigen Puffersystemen aus Siliziumalkoxiden poly(Silicat) zu bilden (Krasko et al., 2000; Müller et al., 2007b; Zhou et al., 1999). In vivo katalysiert Silicatein die Synthese der Silicathülle der Schwamm-Spiculae (Skelettelemente; Müller et al., 2005b; Müller et al., 2007a; Müller et al., 2007b; Schröder et al., 2007a). Dieses Biosilica wurde in Form von Silica-Nanospheren mit Durchmessern zwischen 100 nm und 250 nm organisiert vorgefunden (Pisera 2003; Tahir et al., 2005). Mit dieser Arbeit konnte gezeigt werden, dass Escherichia coli erfolgreich mit dem Silicatein-Gen transformiert werden kann. Das Level der Proteinexpression kann in Anwesenheit von Isopropyl-β-D-thiogalaktopyranosid (IPTG) effizient erhöht werden, indem man die Bakterienzellen gleichzeitig mit Kieselsäure inkubiert. Dieser Effekt konnte sowohl auf Ebene der Synthese des rekombinanten Proteins durch Western Blot als auch durch Immunfluoreszenzmikroskopie nachgewiesen werden. Das heterolog produzierte Silicatein besitzt enzymatische Aktivität und kann die Polymerisation von Kieselsäure katalysieren. Dies konnte sowohl durch Färbung mit Rhodamin123, als auch durch Reaktion der nicht polymerisierten, freien Kieselsäure mit dem ß-Silicomolybdato-Farbsystem (Silicomolybdänblau) nachgewiesen werden. Elektronenmikroskopische Untersuchungen zeigten, dass nur die silicateinexprimierenden Bakterien während des Wachstums in Anwesenheit von Kieselsäure eine viskose Hülle um Zelle herum bilden. Ebenfalls konnte gezeigt werden, dass Silicatein-α aus Suberites domuncula nach Transformation in E. coli an die Zelloberfläche dieser Zellen transportiert wurde und dort seine enzymatische Funktion beibehielt. Die Silicathülle wurde mittels Raster-Elektronenmikroskopie (REM) analysiert. Die Bakterien, die Silicatein exprimierten und poly(Silicat) an ihrer Oberfläche synthetisierten, zeigten die gleichen Wachstumsraten wie die Bakterien, die das Gen nicht enthielten. Schlussfolgernd lässt sich sagen, dass die silicateinvermittelte Verkapselung von Bakterien mit poly(Silicat) die Bandbreite der Anwendung von Bakterien für die Produktion von rekombinanten Proteinen verbessern, erweitern und optimieren könnte.
Resumo:
E. coli ist in der Lage unter aeroben sowie anaeroben Bedingungen C4-Dicarbonsäuren zur Energiekonservierung zu nutzen. Das DcuS/DcuR-Zweikomponentensystem detektiert diese und reguliert die Gene für den C4-Dicarboxylat-Transport und Metabolismus. Dabei hängt die Sensitivität der Sensorkinase DcuS für C4-Dicarbonsäuren von der Anwesenheit des aeroben Symporters DctA oder des anaeroben Antiporters DcuB ab. Diese bifunktionalen Transporter bilden mit DcuS über direkte Protein-Protein-Wechselwirkungen Sensoreinheiten. In dieser Arbeit wurden die Funktionen von DctA und DcuS im DctA/DcuS-Sensorkomplex analysiert. Mit DctA(S380D) wurde eine Variante des Transporters identifiziert, in der die regulatorische Eigenschaft von der katalytischen Funktion entkoppelt ist. Stämme von E. coli, die den DctA(S380D)/DcuS-Sensorkomplex enthielten, waren in der Lage C4-Dicarbonsäuren wahrzunehmen, obwohl die Transportfunktion von DctA inaktiviert war. Zudem wurden Unterschiede in den Substratspektren von DctA und DcuS festgestellt. Citrat, ein guter Effektor des DctA/DcuS-Sensorkomplexes, wurde durch DctA nicht gebunden oder transportiert. Anhand von Titrationsexperimenten mit variierenden DctA-Mengen wurde außerdem nachgewiesen, dass die Sensitivität von DcuS für seine Effektoren von der DctA-Konzentration abhängig ist. Es konnte gezeigt werden, dass DctA im DctA/DcuS-Sensorkomplex nicht an der Erkennung von C4-Dicarbonsäuren beteiligt ist. DcuS stellt die Signaleingangsstelle des Komplexes dar, während DctA durch seine Anwesenheit die Sensorkinase in eine funktionsbereite oder sensitive Form überführt, die auf Effektoren reagieren kann. Darüber hinaus wurde die Rolle der Transmembranhelices TM1 und TM2 von DcuS für die Funktion und Dimerisierung der Sensorkinase untersucht. Durch Sequenzanalysen wurden „SmallxxxSmall“-Motive, deren Relevanz als Dimerisierungsschnittstellen bereits in Transmembranhelices anderer Proteine nachgewiesen wurde, in TM1 sowie TM2 identifiziert. Die Homodimerisierung beider Transmembrandomänen wurde im GALLEX Two-Hybrid System nachgewiesen, wobei die TM2-TM2-Interaktion stärker war. Die Substitution G190A/G194A im SxxxGxxxG-Tandemmotiv von TM2 rief zudem einen deutlichen Funktionsverlust der Sensorkinase hervor. Dieser Aktivitätsverlust korrelierte mit Störungen der Homodimerisierung von TM2(G190A/G194A) sowie DcuS(G190A/G194A) bei bakteriellen Two-Hybrid Messungen im GALLEX- bzw. BACTH-System. Demzufolge agiert Transmembranhelix 2 mit seinem SxxxGxxxG-Sequenzmotiv als wesentliche Homodimerisierungsstelle in DcuS. Die Dimerisierung von DcuS ist essentiell für die Funktion der Histidinkinase. Zusätzlich wurde bei fluoreszenzmikroskopischen Studien durch Koexpression von DcuS bzw. DctA die zelluläre Kolokalisierung von DctA und DcuR mit DcuS sowie DauA mit DctA nachgewiesen. Die DctA/DcuS-Sensoreinheit kann demnach zum DauA/DctA/DcuS/DcuR-Komplex erweitert werden.
Resumo:
Escherichia coli kann unter aeroben und anaeroben Bedingungen mit C4-Dicarboxylaten wachsen, die Regulation des Stoffwechsels erfolgt durch das Zwei-Komponenten-System DcuSR. Die C4-Dicarboxylattransporter DctA (aerob) bzw. DcuB (anaerob) agieren als Co-Regulatoren und bilden gemeinsam mit der Sensor-Histidinkinase DcuS einen Sensorkomplex, in dem DcuS den Sensor darstellt und DctA bzw. DcuB diesen in seine rezeptive Form überführen. DcuS ist membranständig und verknüpft die Bindung von C4-Dicarboxylaten im Periplasma mit der Autophosphorylierung seiner Kinasedomäne im Cytoplasma. Dies stellt den Beginn einer Signalkaskade vom extrazellulären Reiz zum cytoplasmatischen Responseregulator DcuR dar.rnIn dieser Arbeit wurde die intramolekulare Signaltransduktion in DcuS und über die Membran untersucht. Der Fokus lag auf der Funktion der beiden Transmembranhelices TM1 und TM2 und der cytoplasmatischen PAS-Domäne, die die sensorische PASp- mit der effektorischen Kinasedomäne verbinden. Konformationsänderungen dieser Signalweiterleitung wurden durch Cysteinzugänglichkeitsstudien, oxidatives Cystein-Crosslinking und Mutageneseexperimente analysiert. rnTM2 wurde als der Überträger eines transmembranen Signals identifiziert, während TM1 als Membrananker fungiert. Der aktive Signalzustand von TM2 wird unabhängig von der Art der DcuS-Aktivierung (Effektorbindung, Deletion des Co-Regulators DctA oder PASc-ON-Mutationen) eingenommen. Der Signaltransduktion liegt eine Verschiebung von TM2 entlang ihrer Längsachse (Kolbenhub) in Richtung Periplasma zu Grunde. Cystein-Crosslinking offenbarte eine durchgehende Helix aus PASp-α6 und TM2, die im Dimer parallel mit ihrem Pendant verschoben wird. Die Amplitude des Kolbenhubs wurde anhand von Zugänglichkeitsveränderungen, der Lage verankernder Tryptophanreste, Strukturvergleichen und energetischen Berechnungen auf max. 4 - 6 Å festgelegt. Sie ist von der Effektorstärke abhängig und koppelt so die metabolische Bevorzugung einzelner Substrate an das Ausmaß des Kolbenhubs und der Genexpression. Für die cytoplasmatische PAS-Domäne wurde ein Zusammenhang zwischen lokaler Dimerisierung und Kontrolle der Sensorfunktion nachgewiesen. Schwächung der Dimerisierung führt zu einer Aktivierung der Sensorkinase. Es wurde eine hydrophobe Region identifiziert, deren strukturelle Integrität für diese Dimerisierung essentiell ist. Mit N248 wurde ein funktionell bedeutender Rest beschrieben, der auf Grund seiner Lage und seiner Eigenschaft mehrere Sekundärstrukturelemente zu verknüpfen, als Scharnier innerhalb der Domäne an der Umsetzung des Kolbenhubs in eine veränderte Quartärstruktur von PASc beteiligt sein könnte.