18 resultados para ab initio electron theory
Resumo:
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. \\rnThe only known theoretical, non-perturbative and {\it ab initio} method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations.rnrnThis thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses.\\rnFirst of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be $m_{ud}^{\overline{\text{MS}}}(2\text{ GeV}) = 3.03(17)(38)\text{ MeV}$. This value is in good agreement with values from experiments and other lattice determinations.\\rnElectro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass.\newpage Finally we perform a continuum extrapolation and chiral extrapolations to the physical point.\\rnIn addition, we investigated so called excited state contributions to these observables. A technique was used, the summation method, which reduces these effects significantly and a much better agreement with experimental data was achieved. On the lattice, the Dirac radius and the axial charge are usually found to be much smaller than the experimental values. However, due to the carefully investigation of all the afore-mentioned systematic effects we get $\langle r_1^2\rangle_{u-d}=0.627(54)\text{ fm}^2$ and $g_A=1.218(92)$, which is in agreement with the experimental values within the errors.rnrnThe first three chapters introduce the theoretical background of form factors of the nucleon and lattice QCD in general. In chapter four the lattice spacing is determined. The computation of nucleon form factors is described in chapter five where systematic effects are investigated. All results are presented in chapter six. The thesis ends with a summary of the results and identifies options to complement and extend the calculations presented. rn
Resumo:
Molecular dynamics simulations of silicate and borate glasses and melts: Structure, diffusion dynamics and vibrational properties. In this work computer simulations of the model glass formers SiO2 and B2O3 are presented, using the techniques of classical molecular dynamics (MD) simulations and quantum mechanical calculations, based on density functional theory (DFT). The latter limits the system size to about 100−200 atoms. SiO2 and B2O3 are the two most important network formers for industrial applications of oxide glasses. Glass samples are generated by means of a quench from the melt with classical MD simulations and a subsequent structural relaxation with DFT forces. In addition, full ab initio quenches are carried out with a significantly faster cooling rate. In principle, the structural properties are in good agreement with experimental results from neutron and X-ray scattering, in all cases. A special focus is on the study of vibrational properties, as they give access to low-temperature thermodynamic properties. The vibrational spectra are calculated by the so-called ”frozen phonon” method. In all cases, the DFT curves show an acceptable agreement with experimental results of inelastic neutron scattering. In case of the model glass former B2O3, a new classical interaction potential is parametrized, based on the liquid trajectory of an ab initio MD simulation at 2300 K. In this course, a structural fitting routine is used. The inclusion of 3-body angular interactions leads to a significantly improved agreement of the liquid properties of the classical MD and ab initio MD simulations. However, the generated glass structures, in all cases, show a significantly lower fraction of 3-membered planar boroxol rings as predicted by experimental results (f=60%-80%). The largest boroxol ring fraction of f=15±5% is observed in the full ab initio quenches from 2300 K. In case of SiO2, the glass structures after the quantum mechanical relaxation are the basis for calculations of the linear thermal expansion coefficient αL(T), employing the quasi-harmonic approximation. The striking observation is a change change of sign of αL(T) going along with a temperature range of negative αL(T) at low temperatures, which is in good agreement with experimental results.
Resumo:
One of the fundamental interactions in the Standard Model of particle physicsrnis the strong force, which can be formulated as a non-abelian gauge theoryrncalled Quantum Chromodynamics (QCD). rnIn the low-energy regime, where the QCD coupling becomes strong and quarksrnand gluons are confined to hadrons, a perturbativernexpansion in the coupling constant is not possible.rnHowever, the introduction of a four-dimensional Euclidean space-timernlattice allows for an textit{ab initio} treatment of QCD and provides arnpowerful tool to study the low-energy dynamics of hadrons.rnSome hadronic matrix elements of interest receive contributionsrnfrom diagrams including quark-disconnected loops, i.e. disconnected quarkrnlines from one lattice point back to the same point. The calculation of suchrnquark loops is computationally very demanding, because it requires knowledge ofrnthe all-to-all propagator. In this thesis we use stochastic sources and arnhopping parameter expansion to estimate such propagators.rnWe apply this technique to study two problems which relay crucially on therncalculation of quark-disconnected diagrams, namely the scalar form factor ofrnthe pion and the hadronic vacuum polarization contribution to the anomalousrnmagnet moment of the muon.rnThe scalar form factor of the pion describes the coupling of a charged pion torna scalar particle. We calculate the connected and the disconnected contributionrnto the scalar form factor for three different momentum transfers. The scalarrnradius of the pion is extracted from the momentum dependence of the form factor.rnThe use ofrnseveral different pion masses and lattice spacings allows for an extrapolationrnto the physical point. The chiral extrapolation is done using chiralrnperturbation theory ($chi$PT). We find that our pion mass dependence of thernscalar radius is consistent with $chi$PT at next-to-leading order.rnAdditionally, we are able to extract the low energy constant $ell_4$ from thernextrapolation, and ourrnresult is in agreement with results from other lattice determinations.rnFurthermore, our result for the scalar pion radius at the physical point isrnconsistent with a value that was extracted from $pipi$-scattering data. rnThe hadronic vacuum polarization (HVP) is the leading-order hadronicrncontribution to the anomalous magnetic moment $a_mu$ of the muon. The HVP canrnbe estimated from the correlation of two vector currents in the time-momentumrnrepresentation. We explicitly calculate the corresponding disconnectedrncontribution to the vector correlator. We find that the disconnectedrncontribution is consistent with zero within its statistical errors. This resultrncan be converted into an upper limit for the maximum contribution of therndisconnected diagram to $a_mu$ by using the expected time-dependence of therncorrelator and comparing it to the corresponding connected contribution. Wernfind the disconnected contribution to be smaller than $approx5%$ of thernconnected one. This value can be used as an estimate for a systematic errorrnthat arises from neglecting the disconnected contribution.rn