17 resultados para Partial Differential Equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in derrnfreien Energie überwinden um einen Tropfen der stabilen Phase zu formen.rnHerkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. Inrnanisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-rnbracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems starkrnauf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb derrnAufrauungstemperatur T R schwächer. Das Ising-Modell ist ein einfaches Mo-rndell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-rnulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-rnhergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. DasrnAusmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-rnduzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogrammsrnfür das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.rnGrafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-rnstrakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-rndetails verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-rnfläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-rnfläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durchrnein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-rnchung ab, welche das Verhalten der freien Energie der Oberfläche in einemrnanisotropen System beschreibt. Kombiniert mit thermodynamischer Integrationrnkann die Gleichung benutzt werden, um die anisotrope Oberflächenspannungrnüber einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-rnsungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-rnstimung und Genauigkeit, welche vor allem durch die im Vergleich zu früherenrnMessungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-rnaturabhängigkeit der Oberflächensteifheit κ wird oberhalb von T R durch diernKrümmung der freien Energie der Oberfläche für kleine Winkel gemessen. DiesernMessung lässt sich mit Simulationsergebnissen in der Literatur vergleichen undrnhat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-rnverhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell fürrndas Verhalten um Θ = 90 Grad weit unterhalb von T R. Der Winkel bleibt bis zu einemrnkritischen Feld H C quasi null; oberhalb des kritischen Feldes steigt der Winkelrnrapide an. H C wird mit der freien Energie einer Stufe in Verbindung gebracht,rnwas es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harternWand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-rnergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag derrnKontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-rnyse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wirdrneine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.rnbenutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-rnplementieren einen parallelen Evolution Galerkin Operator und erreichen

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.