20 resultados para Egfp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysosomaler Transport kationischer Aminosäuren (KAS) stellt einen Rettungsweg in der Cystinose-Therapie dar. Ein solches Transportsystem wurde in humanen Hautfibroblasten beschrieben und mit System c benannt. Des Weiteren stellt lysosomales Arginin eine Substratquelle für die endotheliale NO-Synthase (eNOS) dar. Das von der eNOS gebildete NO ist ein wichtiges vasoprotektiv wirkendes Signalmolekül. Ziel war es daher, herauszufinden, ob Mitglieder der SLC7-Unterfamilie hCAT möglicherweise System c repräsentieren.rnIn dieser Arbeit konnte ich die lysosomale Lokalisation verschiedener endogener, sowie als EGFP-Fusionsproteine überexprimierter CAT-Isoformen nachweisen. Mittels Fluoreszenz-mikroskopie wurde festgestellt, dass die in U373MG-Zellen überexprimierten Fusionsproteine hCAT-1.EGFP sowie SLC7A14.EGFP mit dem lysosomalen Fluoreszenz-Farbstoff LysoTracker co-lokalisieren. Eine Lokalisation in Mitochondrien oder dem endoplasmatischem Retikulum konnte mit entsprechenden Fluoreszenz-Farbstoffen ausgeschlossen werden. Zusätzlich reicherten sich die überexprimierten Proteine hCAT-1.EGFP, hCAT-2B.EGFP und SLC7A14.EGFP in der lysosomalen Fraktion C aus U373MG-Zellen zusammen mit den lysosomalen Markern LAMP-1 und Cathepsin D an. Gleiches galt für den endogenen hCAT-1 in der lysosomalen Fraktion C aus EA.hy926- und U373MG-Zellen sowie für den SLC7A14 in den humanen Hautfibroblasten FCys5. Mit dem im Rahmen dieser Arbeit generierte Antikörper gegen natives SLC7A14 konnte erstmals die endogene Expression und Lokalisation von SLC7A14 in verschiedenen Zelltypen analysiert werden.rnObwohl eine Herunterregulation des hCAT-1 in EA.hy926-Endothelzellen nicht zu einer Reduktion der Versorgung der eNOS mit lysosomalem Arginin führte, ist eine Funktion von hCAT-1 im Lysosom wahrscheinlich. Sowohl die [3H]Arginin- als auch die [3H]Lysin-Aufnahme der Fraktion C aus U373MG-hCAT-1.EGFP war signifikant höher als in die Fraktion C aus EGFP-Kontrollzellen. Dies konnte ebenfalls für den hCAT-2B.EGFP gezeigt werden. Zusätzlich zeigten lysosomale Proben aus U373MG-hCAT-2B.EGFP-Zellen in der SSM-basierten Elektrophysiologie eine elektrogene Transportaktivität für Arginin. Das Protein SLC7A14.EGFP zeigte in keiner der beiden durchgeführten Transportstudien eine Aktivität. Dies war unerwartet, da die aus der Diplomarbeit stammende und im Rahmen dieser Dissertation erweiterte Charakterisierung der hCAT-2/A14_BK-Chimäre, die die „funktionelle Domäne“ des SLC7A14 im Rückgrat des hCAT-2 trug, zuvor den Verdacht erhärtet hatte, dass SLC7A14 ein lysosomal lokalisierter Transporter für KAS sein könnte. Diese Studien zeigten allerding erstmals, dass die „funktionelle Domäne“ der hCATs die pH-Abhängigkeit vermittelt und eine Rolle in der Substraterkennung spielt.rnZukünftig soll weiter versucht werden auch endogen eine Transportaktivität der hCATs für KAS im Lysosom nachzuweisen und das Substrat für das intrazellulär lokalisierte Waisen-Protein SLC7A14 zu finden. Eine mögliche Rolle könnte SLC7A14 als Transporter für Neurotransmitter spielen, da eine sehr prominente Expression im ZNS festgestellt wurde.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagie ist ein konservierter, kataboler Mechanismus in allen eukaryoten Zellen. Unter anderem wird ihm eine wichtige Rolle als zellautonomer Abwehrmechanismus gegen Mikroorganismen zugeschrieben; von manchen Infektionserregern wird er jedoch unterlaufen oder sogar genutzt. Der stärkste Auslöser der Autophagie ist ein Mangel an Nährstoffen, insbesondere Aminosäuren. Über die Deaktivierung der Kinase mTORC1 und die Phosphorylierung des eukaryoten Translationsinitiationsfaktors eIF2α hemmt die Nährstoffknappheit die Proteinbiosynthese und aktiviert gleichzeitig Autophagie. Wie Mikroorganismen, insbesondere Bakterien, Autophagie auslösen oder manipulieren, ist derzeit Gegenstand intensiver Forschung. Modifikationen an Mikroben oder Phagosomen und Adapterproteine, die diese Veränderungen und Komponenten des Autophagieapparates erkennen, scheinen jedenfalls bei der selektiven Erkennung durch die Autophagie-Maschinerie wichtig zu sein. rnIn der vorliegenden Dissertationsarbeit wird die Rolle des membranporenbildenden α-Toxins von Staphylococcus aureus für die Induktion von Autophagie beleuchtet. Zum einen erwies sich die Akkumulation von (EGFP)-LC3(II), einem Marker der Autophagosomen, um intrazelluläre S. aureus als abhängig von α-Toxin. Zweitens, genügt extrazellulär appliziertes α-Toxin um (EGFP)-LC3(II)-positive Endosomen zu induzieren. Während der Angriff aus dem extrazellulären Raum jedoch binnen kurzer Zeit eine fokale Kumulation von phosphoryliertem eIF2α an der Plasmamembran induziert, die an der Internalisierung des Toxins beteiligt ist, findet sich am phagosomalen Kompartiment keine Toxin-abhängige Anhäufung von p-eIF2α oder proximalen Autophagieregulatoren. Dies impliziert, dass Toxin-Angriff auf die Plasmamembran, nicht aber auf das Phagosom, zu einer Reaktion führt, wie sie bei massivem Nährstoffmangel zu beobachten ist. Obwohl keine α-Toxin-abhängige Kumulation von p-eIF2α bei einem Angriff aus dem Phagosom erfolgt, findet sich um α-Toxin-produzierende Bakterien eine massive Kumulation von LC3 und Adapterprotein p62/Sequestosome1. Dies deutet daraufhin, dass der Ort des Angriffs - Plasmamembran oder Phagosom – für den Autophagie-induzierenden Mechanismus wichtig sein könnte. Der unterschiedliche Effekt auf die zellulären Ionenkonzentrationen, den ein Angriff auf die Plasmamembran oder auf ein Phagosom auslösen würde, bietet hierfür eine mögliche Erklärung. Die Aktivierung der Autophagie über Adapterproteine könnte dann als back-up Mechanismus fungieren, der auch dann greift, wenn eine Invasion ohne Schädigung der Plasmamembran erfolgt. Ein cross-talk der beiden Induktionswege ist angesichts der Bedeutung von p62 für die selektive und die Hunger-assoziierte Autophagie gut möglich; sezerniertes Toxin könnte durch die Aktivierung der basalen Autophagie Adapter-basierte Mechanismen verstärken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the effect of chemical nucleoside modification on the physicochemical and biological properties of nucleic acids. Positional alteration on the Watson-Crick edge of purines and pyrimidines, the “C-H” edge of pyrimidines, as well as both the Hoogsteen and sugar edges of purines were attempted by means of copper catalyzed azide-alkyne cycloaddition. For this purpose, nucleic acid building blocks carrying terminal alkynes were synthesized and introduced into oligonucleotides by solid-phase oligonucleotide chemistry. rnOf particular interest was the effect of nucleoside modification on hydrogen bond formation with complementary nucleosides. The attachment of propargyl functionalities onto the N2 of guanosine and the N4 of 5-methylcytosine, respectively, followed by incorporation of the modified analogs into oligonucleotides, was successfully achieved. Temperature dependent UV-absorption melting measurements with duplexes formed between modified oligonucleotides and a variety of complementary strands resulted in melting temperatures for the respective duplexes. As a result, the effect that both the nature and the site of nucleoside modification have on base pairing properties could thus be assisted. rnTo further explore the enzymatic recognition of chemically modified nucleosides, the oligonucleotide containing the N2-modified guanosine derivative on the 5’-end, which was clicked to a fluorescent dye, was subjected to knockdown analyses of the eGFP reporter gene in the presence of increasing concentrations of siRNA duplexes. From these dose-dependent experiments, a clear effect of 5’-labeling on the knockdown efficiency could be seen. In contrast, 3’-labeling was found to be relatively insignificant.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydiae are obligate intracellular bacteria with a strong global prevalence. They cause infections of the eye, lung and the genital tract and can either replicate in inclusion compartments or persist inside their host cell. In this thesis we focused on two aspects of chlamydiae infection. We hypothesize that transcription factor AP-1 is crucial for a replicative chlamydiae infection in epithelial cells. In addition we suggest that chlamydiae hide inside apoptotic blebs for a silent uptake by macrophages as immune evasion strategy.rnFocusing on AP-1, we could demonstrate that during Chlamydia pneumoniae infection, protein expression and phosphorylation of the AP-1 family member c-Jun significantly increased in a time and dose dependent manner. A siRNA knockdown of c-Jun in HEp-2 cells reduced chlamydial load, resulting in smaller inclusions and a significant lower chlamydial recovery. Furthermore, inhibition of the c-Jun containing AP-1 complexes, using Tanshinone IIA, changed the replicative infection into a persistent phenotype, characterized by (i) smaller, aberrant inclusions, (ii) a strong decrease in chlamydial load, as well as by (iii) its reversibility after removal of Tanshinone IIA. As chlamydiae are energy parasites, we investigated whether Tanshinone IIA interferes with energy/metabolism related processes. rnA role for autophagy or gene expression of glut-1 and c-jun in persistence could not be determined. However we could demonstrate Tanshinone IIA treatment to be accompanied by a significant decrease of ATP levels, probably causing a chlamydiae persistent phenotype.rnRegarding the chlamydial interaction with human primary cells we characterized infection of different chlamydiae species in either pro-inflammatory (type I) or anti-inflammatory (type II) human monocyte derived macrophages (hMDM). We found both phenotypes to be susceptible to chlamydiae infection. Furthermore, we observed that upon Chlamydia trachomatis and GFP-expressing Chlamydia trachomatis infection more hMDM type II were infected. However the chlamydial load was higher in hMDM type I and correspondingly, more replicative-like inclusions were found in this phenotype. Next, we focused on the chlamydial transfer using a combination of high speed live cell imaging and GFP-expressing Chlamydia trachomatis for optimal visualization. Thereby, we could successfully visualize the formation of apoptotic, chlamydiae-containing blebs and the interaction of hMDM with these blebs. Moreover, we observed the development of a replicative infection in hMDM. rnIn conclusion, we demonstrated a crucial role of AP-1 for C. pneumoniae development and preliminary time lapse data suggest that chlamydiae can be transferred to hMDMs via apoptotic blebs. In all, these data may contribute to a better understanding of chlamydial infection processes in humans.rn