18 resultados para Cyclic Staircase Voltammetry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycarbosilanes are a class of polymers at the interface between organic and inorganic chemistry. They are characterized by a high thermal and chemical inertness and high flexibility, especially pronounced for branched structures. Linear polycarbosilanes are well known as precursors for the preparation of SiCx ceramics. Additionally, more sophisticated architectures like dendrimers, hyperbranched polymers or block copolymers have been the subject of research for more than a decade. The scope of this work was to expand the properties and fields of application for polycarbosilane-containing structures. Thus, the work is divided in two major parts. The first part covers the synthesis and characterization of hyperbranched polycarbosilanes containing organometallic moieties. Hyperbranched poly-carbosilanes were synthesized using hydrosilylation of diallylmethylsilane and methyldiundecenylsilane. The degree of branching for polydiallymethylsilane was determined using standard 1H-NMR spectroscopy. The functional building blocks ferrocenyldimethylsilane and diferrocenylmethylsilane were synthesized which contain an isolated ferrocene unit or two ferrocenes bridged by silicon, respectively. Hyperbranched polycarbosilanes functionalized with ferrocenyl moieties were synthesized by modification of preformed polymers or by copolymerization of AB2 carbosilane monomers with AX-type ferrocenylsilanes. Polymers with Mn = 2500-9000g/mol and ferrocene contents of up to 67wt% were obtained. Electrochemical characterization by cyclic voltammetry revealed that polymers functionalized with isolated ferrocene units showed a single reversible oxidation wave, while voltammograms for polymers functionalized with diferrocenyl silane exhibited two well-separated reversible oxidation-reduction waves. This shows that the polymer bound ferrocenes bridged by silicon are electronically communicating and thus oxidation of the first ferrocene shifts the oxidation potential for the adjacent one. The polymers were utilized successfully for the preparation of modified electrodes with persistent and reproducible electrochemical response in organic solvents as well as in aqueous solution. The presented work has proven that ferrocenyl-functionalized hyperbranched polymers exhibit similar electrochemical properties as the analogous dendrimers. In a further approach it was shown that hyperbranched polymers containing organometallic moieties can be synthesized by polymerization of a new ferrocene-containing AB2 monomer - diallylferrocenylsilane. The second part of this work is dedicated to the preparation of core-functional hyperbranched polycarbosilanes. Low molecular weight ambifunctional molecules were synthesized that contain double bonds for the attachment of a polycarbosilane polymer as well as a second functionality available for further reaction and modification. Reactive vinyl groups in the core molecule allow an efficient attachment of hyperbranched polycarbosilane which was proven by MALDI-ToF and GPC. In combination with slow monomer addition techniques molecular weight and polydispersity of the polymers were controlled successfully. Core-functional polymers were characterized by NMR-spectroscopy, MALDI-ToF and GPC. Polymers with polydispersities <2 and molecular weights up to 5300g/mol were obtained. Transformation of the double bonds of the carbosilane was demonstrated with various silanes using hydrosilylation reaction or hydrogenation. Additionally, the core-functionality was varied resulting in polymers with bromo-, phthalimide-, amine- or azide moieties. Thus, a versatile synthetic strategy was developed that allows the synthesis of tailor-made polymers.A promising approach is the application of the polymer building blocks in copolymer synthesis. Bisglycidolization of amine-functional polycarbosilanes produces macro-initiators that are suitable for the multibranching-ring opening polymerization of glycidol. This experiments lead to the first example of hyperbranched-hyperbranched amphiphilic block copolymers, hb-PG-b-hb-PCS. Furthermore, the implementation of copper-catalyzed cycloaddition between azide-functional polycarbosilane and alkyne-functional poly(ethoxyethyl glycidylether) resulted in linear-hyperbranched block copolymers. The facile removal of acetal protecting groups provided convenient access to lin-PG-b-hb-PCS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zusammenfassung der Dissertation, Carolin Edinger, April 2015. Im Rahmen der Dissertation ist eine effiziente und zuverlässige Methode zur elektrochemischen Desoxygenierung von aromatischen Carbonsäureamiden entwickelt worden (Schema 1).[1] Unter galvanostatischen Bedingungen eignet sich das optimierte Elektrolytsystem bestehend aus 2%iger methanolischer H2SO4 und geringen Mengen an Additiv 1 in Kombination mit einer Bleikathode hervorragend in dem gewählten geteilten Zellaufbau. Schema 1: Elektrochemische Desoxygenierung aromatischer Carbonsäureamide. Untersuchungen an verschiedensten Amidsubstraten haben gezeigt, dass ein breites Spektrum an Aminen mit dieser Methode zugänglich ist und durch umfangreiche Studien konnten optimale Elektrolyseparameter gefunden werden. Außerdem wurde die Hochskalierung der Ansatzgröße an einem Testsubstrat mit hohen Aminausbeuten von bis zu 73% gewährleistet. Ein besonderes Merkmal der entwickelten Synthese ist neben milden Bedingungen und hoher Selektivität die Verwendung von Ammoniumsalzadditiven. Der positive Effekt dieser Additive auf die Desoxygenierungsreaktion ist vielfältig: Die Wasserstoffentwicklung als unerwünschte Nebenreaktion wird zu negativeren Potentialen verschoben und die Bleikathode wird durch Zurückdrängung der PbSO4-Bildung effektiv vor Korrosion geschützt. Dies konnte durch experimentelle Werte wie die Erhöhung der Produkt- und Stromausbeute durch Additivzusatz während der Elektrolyse hinreichend bestätigt werden. Aber auch zyklovoltammetrische Untersuchungen und Lichtmikroskopaufnahmen der Elektrodenoberfläche bekräftigen eindeutig diese Aussagen.[2,3] Die entwickelte elektrochemische Methode konnte zusätzlich erfolgreich auf Verbindungen übertragen werden, die mit Carbonsäureamiden verwandt sind. So gelang es, aromatische und aliphatische Sulfoxide in sehr guten Ausbeuten selektiv zu den entsprechenden Sulfiden umzusetzen. Zusätzlich konnten bereits bei weiteren, durch klassische Methoden schwer reduzierbare Stoffklassen erste Erfolge erzielt werden. So gelang es, den Grundstein zur Reduktion von Estern und Triphenylphosphinoxid zu legen und erste, vielversprechende Ergebnisse zu erlangen. Da Elektronen als Reduktionsmittel eingesetzt werden und lediglich Wasser als Nebenprodukt gebildet wird, zeichnet sich die entwickelte Desoxygenierungsmethode vor allem durch milde Bedingungen und hohe Selektivität aus. Da weder Reagenzien noch Katalysatoren verwendet werden müssen, werden Abfälle vermieden. Dadurch ist die gefundene Reduktionsmethode nicht nur kostengünstig, sondern erweist sich auch in der Reaktionsführung als vorteilhaft. Literatur: [1] C. Edinger, S. R. Waldvogel, Eur. J. Org. Chem. 2014, 2014, 5144–5148. [2] C. Edinger, V. Grimaudo, P. Broekmann, S. R. Waldvogel, ChemElectroChem 2014, 1, 1018–1022. [3] C. Edinger, S. R. Waldvogel, PCT Int. Appl. 2013, WO 2013030316A2.