171 resultados para elektrische Schaltkreise, Laserdiode, Photodiode, Frequenzvervielfacher, thermoelektrische Kopplung, gemischte finite Elemente
Resumo:
Magnetic memories are a backbone of today's digital data storage technology, where the digital information is stored as the magnetic configuration of nanostructured ferromagnetic bits. Currently, the writing of the digital information on the magnetic memory is carried out with the help of magnetic fields. This approach, while viable, is not optimal due to its intrinsically high energy consumption and relatively poor scalability. For this reason, the research for different mechanisms that can be used to manipulate the magnetic configuration of a material is of interest. In this thesis, the control of the magnetization of different nanostructured materials with field-free mechanisms is investigated. The magnetic configuration of these nanostructured materials was imaged directly with high resolution x-ray magnetic microscopy. rnFirst of all, the control of the magnetic configuration of nanostructured ferromagnetic Heusler compounds by fabricating nanostructures with different geometries was analyzed. Here, it was observed that the magnetic configuration of the nanostructured elements is given by the competition of magneto-crystalline and shape anisotropy. By fabricating elements with different geometries, we could alter the point where these two effects equilibrate, allowing for the possibility to tailor the magnetic configuration of these nanostructured elements to the required necessities.rnThen, the control of the magnetic configuration of Ni nanostructures fabricated on top of a piezoelectric material with the magneto-elastic effect (i.e. by applying a piezoelectric strain to the Ni nanostructures) was investigated. Here, the magneto-elastic coupling effect gives rise to an additional anisotropy contribution, proportional to the strain applied to the magnetic material. For this system, a reproducible and reversible control of the magnetic configuration of the nanostructured Ni elements with the application of an electric field across the piezoelectric material was achieved.rnFinally, the control of the magnetic configuration of La0.7Sr0.3MnO3 (LSMO) nanostructures with spin-polarized currents was studied. Here, the spin-transfer torque effect was employed to achieve the displacement of magnetic domain walls in the LSMO nanostructures. A high spin-transfer torque efficiency was observed for LSMO at low temperatures, and a Joule-heating induced hopping of the magnetic domain walls was observed at room temperatures, allowing for the analysis of the energetics of the domain walls in LSMO.rnThe results presented in this thesis give thus an overview on the different field-free approaches that can be used to manipulate and tailor the magnetization configuration of a nanostructured material to the various technological requirements, opening up novel interesting possibilities for these materials.
Resumo:
One of the fundamental interactions in the Standard Model of particle physicsrnis the strong force, which can be formulated as a non-abelian gauge theoryrncalled Quantum Chromodynamics (QCD). rnIn the low-energy regime, where the QCD coupling becomes strong and quarksrnand gluons are confined to hadrons, a perturbativernexpansion in the coupling constant is not possible.rnHowever, the introduction of a four-dimensional Euclidean space-timernlattice allows for an textit{ab initio} treatment of QCD and provides arnpowerful tool to study the low-energy dynamics of hadrons.rnSome hadronic matrix elements of interest receive contributionsrnfrom diagrams including quark-disconnected loops, i.e. disconnected quarkrnlines from one lattice point back to the same point. The calculation of suchrnquark loops is computationally very demanding, because it requires knowledge ofrnthe all-to-all propagator. In this thesis we use stochastic sources and arnhopping parameter expansion to estimate such propagators.rnWe apply this technique to study two problems which relay crucially on therncalculation of quark-disconnected diagrams, namely the scalar form factor ofrnthe pion and the hadronic vacuum polarization contribution to the anomalousrnmagnet moment of the muon.rnThe scalar form factor of the pion describes the coupling of a charged pion torna scalar particle. We calculate the connected and the disconnected contributionrnto the scalar form factor for three different momentum transfers. The scalarrnradius of the pion is extracted from the momentum dependence of the form factor.rnThe use ofrnseveral different pion masses and lattice spacings allows for an extrapolationrnto the physical point. The chiral extrapolation is done using chiralrnperturbation theory ($chi$PT). We find that our pion mass dependence of thernscalar radius is consistent with $chi$PT at next-to-leading order.rnAdditionally, we are able to extract the low energy constant $ell_4$ from thernextrapolation, and ourrnresult is in agreement with results from other lattice determinations.rnFurthermore, our result for the scalar pion radius at the physical point isrnconsistent with a value that was extracted from $pipi$-scattering data. rnThe hadronic vacuum polarization (HVP) is the leading-order hadronicrncontribution to the anomalous magnetic moment $a_mu$ of the muon. The HVP canrnbe estimated from the correlation of two vector currents in the time-momentumrnrepresentation. We explicitly calculate the corresponding disconnectedrncontribution to the vector correlator. We find that the disconnectedrncontribution is consistent with zero within its statistical errors. This resultrncan be converted into an upper limit for the maximum contribution of therndisconnected diagram to $a_mu$ by using the expected time-dependence of therncorrelator and comparing it to the corresponding connected contribution. Wernfind the disconnected contribution to be smaller than $approx5%$ of thernconnected one. This value can be used as an estimate for a systematic errorrnthat arises from neglecting the disconnected contribution.rn
Resumo:
In der Archäologie werden elektrische Widerstandsmessungen routinemäßig zur Prospektion von Fundstellen eingesetzt. Die Methode ist kostengünstig, leicht anwendbar und liefert in den meisten Fällen zuverlässige und leicht zu interpretierende Ergebnisse. Dennoch kann die Methode die archäologischen Strukturen in manchen Fällen nur teilweise oder gar nicht abbilden, wenn die bodenphysikalischen und bodenchemischen Eigenschaften des Bodens und der archäologischen Strukturen dies nicht zulassen. Der spezifische elektrische Widerstand wird durch Parameter wie Wassergehalt, Bodenstruktur, Bodenskelett, Bodentextur, Salinität und Bodentemperatur beeinflusst. Manche dieser Parameter, wie z.B. der Wassergehalt und die Bodentemperatur, unterliegen einer saisonalen Veränderung. Die vorliegende Arbeit untersucht den spezifischen elektrischen Widerstand von archäologischen Steinstrukturen und evaluiert die Möglichkeit, auf Grundlage von Geländemessungen und Laboranalysen archäologische Strukturen und Böden als numerische Modelle darzustellen. Dazu wurde eine Kombination von verschiedenen bodenkundlichen, geoarchäologischen und geophysikalischen Methoden verwendet. Um archäologische Strukturen und Bodenprofile als numerische Widerstandsmodelle darstellen zu können, werden Informationen zur Geometrie der Strukturen und ihren elektrischen Widerstandswerten benötigt. Dabei ist die Qualität der Hintergrundinformationen entscheidend für die Genauigkeit des Widerstandsmodells. Die Geometrie der Widerstandsmodelle basiert auf den Ergebnissen von Rammkernsondierungen und archäologische Ausgrabungen. Die an der Ausbildung des elektrischen Widerstands beteiligten Parameter wurden durch die Analyse von Bodenproben gemessen und ermöglichen durch Pedotransfer-Funktion, wie die Rhoades-Formel, die Abschätzung des spezifischen elektrischen Widerstandes des Feinbodens. Um den Einfluss des Bodenskeletts auf den spezifischen elektrischen Widerstand von Bodenprofilen und archäologischen Strukturen zu berechnen, kamen die Perkolationstheorie und die Effective Medium Theory zum Einsatz. Die Genauigkeit und eventuelle Limitierungen der Methoden wurden im Labor durch experimentelle Widerstandsmessungen an ungestörten Bodenproben und synthetischen Materialien überprüft. Die saisonale Veränderung des Wassergehalts im Boden wurde durch numerische Modelle mit der Software HYDRUS simuliert. Die hydraulischen Modelle wurden auf Grundlage der ermittelten bodenkundlichen und archäologischen Stratigraphie erstellt und verwenden die Daten von lokalen Wetterstationen als Eingangsparameter. Durch die Kombination der HYDRUS-Ergebnisse mit den Pedotransfer-Funktionen konnte der Einfluss dieser saisonalen Veränderung auf die Prospektionsergebnisse von elektrischen Widerstandsmethoden berechnet werden. Die Ergebnisse der Modellierungsprozesse wurden mit den Geländemessungen verglichen. Die beste Übereinstimmung zwischen Modellergebnissen und den Prospektionsergebnissen konnte für die Fallstudie bei Katzenbach festgestellt werden. Bei dieser wurden die Modelle auf Grundlage von archäologischen Grabungsergebnissen und detaillierten bodenkundlichen Analysen erstellt. Weitere Fallstudien zeigen, dass elektrische Widerstandsmodelle eingesetzt werden können, um den Einfluss von ungünstigen Prospektionsbedingungen auf die Ergebnisse der elektrischen Widerstandsmessungen abzuschätzen. Diese Informationen unterstützen die Planung und Anwendung der Methoden im Gelände und ermöglichen eine effektivere Interpretation der Prospektionsergebnisse. Die präsentierten Modellierungsansätze benötigen eine weitere Verifizierung durch den Vergleich der Modellierungsergebnisse mit detailliertem geophysikalischem Gelände-Monitoring von archäologischen Fundstellen. Zusätzlich könnten elektrische Widerstandsmessungen an künstlichen Mauerstrukturen unter kontrollierten Bedingungen zur Überprüfung der Modellierungsprozesse genutzt werden.
Resumo:
The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.
Resumo:
Seit seiner Entdeckung im Jahre 1978 wurden für hyperpolarisiertes (HP) 129Xe zahlreiche Anwendungen gefunden. Aufgrund seiner hohen Verstärkung von NMR-Signalen wird es dabei typischerweise für Tracer- und Oberflächenstudien verwendet. Im gasförmigen Zustand ist es ein interessantes, klinisches Kontrastmittel, welches für dynamische Lungen MRT genutzt oder auch in Blut oder lipophilen Flüssigkeiten gelöst werden kann. Weiterhin findet HP-Xe auch in der Grundlagenphysik in He-Xe Co-Magnetometern Verwendung, mit welchen z. B. das elektrische Dipolmoment von Xe bestimmt werden soll, oder es dient zur Überprüfung auf Lorentz-Invarianzen. Alle diese Anwendungen profitieren von einem hohen Polarisationsgrad (PXe), um hohe Signalstärken und lange Lagerzeiten zu erreichen. rnIn dieser Arbeit wurden zwei mobile Xe-Polarisatoren konstruiert: einer für Experimente in der Grundlagenphysik mit einer Produktionsrate von 400 mbar·l/h mit PXe ≈ 5%. Der zweite Xe-Polarisator wurde für medizinische Anwendungen entwickelt und soll 1 bar l/h mit PXe > 20% erzeugen. Der letztere wurde noch nicht getestet. Die Arbeitsbedingungen des Xe-Polarisators für Grundlagenphysik (Strömung des Gasgemischs, Temperatur, Druck und Konzentration von Xe) wurden variiert, um einen höchstmöglichen Polarisationsgrad zu erzielen. Die maximale Polarisation von 5,6 % wurde bei Verwendung eine Gasmischung von 1% Xe bei einem Durchfluss von 200 ml/min, einer Temperatur von 150°C und einem Gesamtdruck von 4 bar erreicht. rnWeiterhin muss HP-Xe auch effizient gelagert werden, um Polarisationsverluste zu minimieren. Das ist besonders für solche Anwendungen notwendig, welche an einem entfernten Standort durchgeführt werden sollen oder auch wenn lange Spinkohärenzeiten gefordert sind, z.B. bei He-Xe Co-Magnetometern. rnHierbei bestand bisher die größte Schwierigkeit darin, die Reproduzierbarkeit der gemessenen Lagerzeiten sicherzustellen. In dieser Arbeit konnte die Spin-Gitter-Relaxationszeit (T1) von HP-129Xe in unbeschichteten, Rb-freien, sphärischen Zellen aus Aluminiumsilikatglas (GE-180) signifikant verbessert werden. Die T1–Zeit wurde in einem selbstgebauten Niederfeld-NMR-System (2 mT) sowohl für reines HP-Xe als auch für HP-Xe in Mischungen mit N2, SF6 und CO2 bestimmt. Bei diesen Experimenten wurde die maximale Relaxationszeit für reines Xe (85% 129 Xe) bei (4,6 ± 0,1) h festgestellt. Dabei lagen die typischen Wand-Relaxationszeiten bei ca. 18 h für Glaszellen mit einem Durchmesser von 10 cm. Des Weiteren wurde herausgefunden, dass CO2 eine unerwartet hohe Effizienz bei der Verkürzung der Lebensdauer der Xe-Xe Moleküle zeigte und somit zu einer deutlichen Verlängerung der gesamten T1-Zeit genutzt werden kann. rnIm Verlauf vieler Experimente wurde durch wiederholte Messungen mit der gleichen Zelle, ein "Alterungsprozess“ bei der Wandrelaxation identifiziert und untersucht. Dieser Effekt könnte leicht rückgängig gemacht werden, indem die anfängliche Reinigungsprozedur wiederholt wurde. Auf diese Weise kann eine konstante Wandrelaxation sichergestellt werden, durch die sehr reproduzierbare T1-Messungen möglich werden. rnSchließlich wurde die maximale Relaxationszeit für HP-Xe mit natürlicher Häufigkeit in Mischungen mit SF6 bestimmt. Überraschenderweise war dieser Wert um ca. 75% niedriger als der Wert für Xenon, das zu 85% mit 129Xe angereichert war. Dieser Effekt wurde durch drei unabhängige Experimente bestätigt, da er nicht von der bestehenden Theorie der Xe-Relaxation ableitbar ist. rnDie Polarisation von HP-Xe, PXe, wird normalerweise durch den Vergleich der NMR-Signale des HP-Xe mit einer thermischen polarisierten Probe (z. B. 1H2O oder Xe) bestimmt. Dabei beinhaltet der Vergleich unterschiedlicher Messungen an verschiedenen Proben (unterschiedlicher Druck, Signalintensität und Messverfahren) viele experimentelle Unsicherheiten, welche sich oft nicht leicht bestimmen lassen. Eine einfache, genaue und kostengünstige Methode zur Bestimmung von PXe durch eine direkte Messung der makroskopischen Magnetisierung in einem statischen Magnetfeld vermeidet alle diese Unsicherheiten. Dieses Verfahren kann Polarisationen von > 2 % mit einer Genauigkeit von maximal 10% fast ohne Polarisationsverlust bestimmen. Zusätzlich kann diese Methode ohne weitere Änderungen auch für Bestimmungen des Polarisationsgrades anderer HP-Gase verwendet werden.rn
Resumo:
The future goal of modern physics is the discovery of physics beyond the Standard Model. One of the most significant hints for New Physics can be seen in the anomalous magnetic moment of the muon - one of the most precise measured variables in modern physics and the main motivation of this work. This variable is associated with the coupling of the muon, an elementary particle, to an external electromagnetic field and is defined as a = (g - 2)/2, whereas g is the gyromagnetic factor of the muon. The muon anomaly has been measured with a relative accuracy of 0.5·10-6. However, a difference between the direct measurement and the Standard Model prediction of 3.6 standard deviations can be observed. This could be a hint for the existence of New Physics. Unfortunately, it is, yet, not significant enough to claim an observation and, thus, more precise measurements and calculations have to be performed.rnThe muon anomaly has three contributions, whereas the ones from quantum electrodynamics and weak interaction can be determined from perturbative calculations. This cannot be done in case of the hadronic contributions at low energies. The leading order contribution - the hadronic vacuum polarization - can be computed via a dispersion integral, which needs as input hadronic cross section measurements from electron-positron annihilations. Hence, it is essential for a precise prediction of the muon anomaly to measure these hadronic cross sections, σ(e+e-→hadrons), with high accuracy. With a contribution of more than 70%, the final state containing two charged pions is the most important one in this context.rnIn this thesis, a new measurement of the σ(e+e-→π+π-) cross section and the pion form factor is performed with an accuracy of 0.9% in the dominant ρ(770) resonance region between 600 and rn900 MeV at the BESIII experiment. The two-pion contribution to the leading-order (LO) hadronic vacuum polarization contribution to (g - 2) from the BESIII result, obtained in this work, is computed to be a(ππ,LO,600-900 MeV) = (368.2±2.5stat±3.3sys)·10-10. With the result presented in this thesis, we make an important contribution on the way to solve the (g - 2) puzzle.