3 resultados para Binary and ternary correlations
em AMS Tesi di Laurea - Alm@DL - Universit
Resumo:
Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato fisiologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e una buona forma fisica siano fattori chiave per la salute. L'aumento dell'età media della popolazione evidenzia l'importanza delle strategie di contrasto delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo di prevenzione per molte patologie, pertanto capire come il cibo influisce sul corpo umano è di fondamentale importanza. In questo lavoro di tesi abbiamo affrontato la caratterizzazione dei sistemi di imaging radiografico Dual-energy X-ray Absorptiometry (DXA). Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su un gruppo di soggetti sani non obesi, la PCA ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti principali in termini delle variabili di composizione corporea restituite dalla DXA. Le prime componenti sono associabili ad indici macroscopici di descrizione corporea (come BMI e WHR). Queste componenti sono sorprendentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità. Dati di analisi metabolica, ottenuti tramite Magnetic Resonance Spectroscopy (MRS) su campioni di urina, sono disponibili per circa mille anziani (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni, non affetti da patologie gravi. I dati di composizione corporea sono altresì presenti per questi soggetti. L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per esprimere gli spettri MRS come combinazione di fattori di base interpretabili come singoli metaboliti. I fattori trovati sono stabili, quindi spettri metabolici di soggetti sono composti dallo stesso pattern di metaboliti indipendentemente dalla nazionalità. Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Ciò suggerisce la possibilità di derivare la composizione corporea dei soggetti a partire dal loro stato metabolico.
Resumo:
In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.
Resumo:
Microplastics (MPs) are highly debated emerging contaminants that are widespread on Earth. Nowadays, assessment of the risk that MPs pose on human health and environment were not developed yet, and standardized analytical methods for their quantification in complex matrices do not exist. Therefore, the formulation of standards which regulating MPs emission in the environment is not possible. The purpose of this study was to develop and apply a method for the analysis of MPs in sewage sludges and water from a wastewater treatment plant (WWTP), due to the relevance of those matrices as important pathway for MPs to enter the environment. Seven polymers were selected, because of their relevance on market production and their frequency of occurrence in such plants: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC), and nylon 6 (PA-6). In the study, a pre-treatment procedure was optimised using Fenton’s reagent and analyses carried out by combining thermochemolysis with Py-GC-MS after sample filtration on quartz (0.3 µm). Polymer quantification was performed with solid polymer mixture in silica and good correlations were obtained with internal calibration. As main results, Fenton's reagent negatively affected the recovery of some polymers (PP, PE, PS, PA-6) and a possible matrix interference was noticed, especially for PET and PVC. The WWTP allowed a good abatement of PS, PE, PP and PVC (on average 90 %) and comparable results were hypothesised for the other polymers. Polymer concentrations is sewage sludges ranged between < 2 μg/gdry and 3.5 mg/ gdry, for PC and PVC, respectively. Possible overestimations for PET and PVC, due to matrix interreferences, were taken into account and discussed.