4 resultados para visual object detection
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi è descritto il lavoro svolto presso un'azienda informatica locale, allo scopo di ricerca ed implementazione di un algoritmo per individuare ed offuscare i volti presenti all'interno di video di e-learning in ambito industriale, al fine di garantire la privacy degli operai presenti. Tale algoritmo sarebbe stato poi da includere in un modulo software da inserire all'interno di un applicazione web già esistente per la gestione di questi video. Si è ricercata una soluzione ad hoc considerando le caratteristiche particolare del problema in questione, studiando le principali tecniche della Computer Vision per comprendere meglio quale strada percorrere. Si è deciso quindi di implementare un algoritmo di Blob Tracking basato sul colore.
Resumo:
In un mondo che richiede sempre maggiormente un'automazione delle attività della catena produttiva industriale, la computer vision rappresenta uno strumento fondamentale perciò che viene già riconosciuta internazionalmente come la Quarta Rivoluzione Industriale o Industry 4.0. Avvalendomi di questo strumento ho intrapreso presso l'azienda Syngenta lo studio della problematica della conta automatica del numero di foglie di una pianta. Il problema è stato affrontato utilizzando due differenti approcci, ispirandosi alla letteratura. All'interno dell'elaborato è presente anche la descrizione progettuale di un ulteriore metodo, ad oggi non presente in letteratura. Le metodologie saranno spiegate in dettaglio ed i risultati ottenuti saranno confrontati utilizzando i primi due approcci. Nel capitolo finale si trarranno le conclusioni sulle basi dei risultati ottenuti e dall'analisi degli stessi.
Resumo:
Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.
Resumo:
The research project object of this thesis is focused on the development of an advanced analytical system based on the combination of an improved thin layer chromatography (TLC) plate coupled with infrared (FTIR) and Raman microscopies for the detection of synthetic dyes. Indeed, the characterization of organic colorants, which are commonly present in mixtures with other components and in a very limited amount, still represents a challenging task in scientific analyses of cultural heritage materials. The approach provides selective spectral fingerprints for each compound, foreseeing the complementary information obtained by micro ATR-RAIRS-FTIR and SERS-Raman analyses, which can be performed on the same separated spot. In particular, silver iodide (AgI) applied on a gold coated slide is proposed as an efficient stationary phase for the discrimination of complex analyte mixtures, such as dyes present in samples of art-historical interest. The gold-AgI-TLC plate shows high performances related both to the chromatographic separation of analytes and to the spectroscopic detection of components. The use of a mid-IR transparent inorganic salt as the stationary phase avoids interferences of the background absorption in FTIR investigations. Moreover, by ATR microscopy measurements performed on the gold-AgI surface, a considerable enhancement in the intensity of spectra is observed. Complementary information can be obtained by Raman analyses, foreseeing a SERS activity of the AgI substrate. The method has been tested for the characterization of a mixture of three synthetic organic colorants widely used in dyeing processes: Brilliant Green (BG1), Rhodamine B (BV10) and Methylene Blue (BB9).