9 resultados para scale-free networks
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il cervello è una rete di cellule nervose connesse da assoni e le cellule stesse sono reti di molecole connesse da reazioni biochimiche. Anche le società sono reti di persone collegate da rapporti di amicizia, parentela e legami professionali. Su più larga scala, catene alimentari ed ecosistemi possono essere rappresentati come reti di specie viventi. E le reti pervadono la tecnologia: Internet, reti elettriche e sistemi di trasporto non sono che pochi degli esempi possibili. Anche il linguaggio che si sta usando in questo momento per veicolare questi ragionamenti a chi legge è una rete, fatta di parole connesse da relazioni sintattiche. A dispetto dell'importanza e della pervasività delle reti, gli scienziati hanno sempre avuto poca comprensione delle loro strutture e proprietà. In che modo le interazioni di alcuni nodi non funzionanti in una complessa rete genetica possono generare il cancro? Come può avvenire così rapidamente la diffusione in taluni sistemi sociali e di comunicazioni, portando ad epidemie di malattie e a virus informatici? Come possono alcune reti continuare a funzionare anche dopo che la maggioranza dei loro nodi ha, invece, smesso di farlo? [...] Le reti reali sono realmente casuali?
Resumo:
Questa tesi affronta lo studio delle proprietà statistiche della topologia di un grafo, che rappresenta le relazioni interpersonali in un gruppo di utenti di Facebook. Perché è interessante? Quali informazioni produce? Anzitutto va osservato che dalla nascita di Internet in poi la globalizzazione ha reso le relazioni sociali un fenomeno di massa con numeri sorprendentemente alti di connessioni. Questo e la disponibilità dei dati forniscono una occasione preziosa per analizzarne la struttura.
Resumo:
Questo lavoro di tesi tratta il tema delle reti complesse, mostrando i principali modelli di rete complessa quali: il modello Random, il modello Small-World ed il modello Scale-free; si introdurranno alcune metriche usate per descrivere le reti complesse quali la Degree centrality, la Closeness centrality e la Betweenness centrality; si descriveranno i problemi da tenere in considerazione durante la definizione e l’implementazione di algoritmi su grafi; i modelli di calcolo su cui progettare gli algoritmi per risolvere i problemi su grafi; un’analisi prestazionale degli algoritmi proposti per calcolare i valori di Beweenness centrality su grafi di medio-grandi dimensioni. Parte di questo lavoro di tesi è consistito nello sviluppo di LANA, LArge-scale Network Analyzer, un software che permette il calcolo e l’analisi di varie metriche di centralità su grafo.
Resumo:
Quando la probabilità di misurare un particolare valore di una certa quantità varia inversamente come potenza di tale valore, il quantitativo è detto come seguente una power-law, conosciuta anche come legge di Zipf o distribuzione di Pareto. Obiettivo di questa tesi sarà principalmente quello di verificare se il campione esteso di imprese segue la power-law (e se sì, in che limiti). A tale fine si configureranno i dati in un formato di rete monomodale, della quale si studieranno alcune macro-proprietà di struttura a livllo complessivo e con riferimento alle componenti (i singoli subnet distinti) di maggior dimensione. Successivamente si compiranno alcuni approfondimenti sulla struttura fine di alcuni subnet, essenzialmente rivolti ad evidenziare la potenza di unapproccio network-based, anche al fine di rivelare rilevanti proprietà nascoste del sistema economico soggiacente, sempre, ovviamente, nei limiti della modellizzazione adottata. In sintesi, ciò che questo lavoro intende ottenere è lo sviluppo di un approccio alternativo al trattamento dei big data a componente relazionale intrinseca (in questo caso le partecipazioni di capitale), verso la loro conversione in "big knowledge": da un insieme di dati cognitivamente inaccessibili, attraverso la strutturazione dell'informazione in modalità di rete, giungere ad una conoscenza sufficientemente chiara e giustificata.
Resumo:
Gli algoritmi di gossip sono utilizzati per la disseminazione di messaggi in una rete peer-to-peer. La tesi tratta lo sviluppo, l'implementazione e l'analisi di quattro nuovi algoritmi di gossip "a due fasi". Gli algoritmi sono stati sviluppati e testati con il simulatore LUNES per poi essere analizzati in vari confronti con gli algoritmi classici dell'ambito, ovvero Fixed Probability e Conditional Broadcast. Le prove sono state effettuate su varie tipologie di grafi, ovvero Random, Scale-free, Small-world e K-Regular.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
The present work studies a km-scale data assimilation scheme based on a LETKF developed for the COSMO model. The aim is to evaluate the impact of the assimilation of two different types of data: temperature, humidity, pressure and wind data from conventional networks (SYNOP, TEMP, AIREP reports) and 3d reflectivity from radar volume. A 3-hourly continuous assimilation cycle has been implemented over an Italian domain, based on a 20 member ensemble, with boundary conditions provided from ECMWF ENS. Three different experiments have been run for evaluating the performance of the assimilation on one week in October 2014 during which Genova flood and Parma flood took place: a control run of the data assimilation cycle with assimilation of data from conventional networks only, a second run in which the SPPT scheme is activated into the COSMO model, a third run in which also reflectivity volumes from meteorological radar are assimilated. Objective evaluation of the experiments has been carried out both on case studies and on the entire week: check of the analysis increments, computing the Desroziers statistics for SYNOP, TEMP, AIREP and RADAR, over the Italian domain, verification of the analyses against data not assimilated (temperature at the lowest model level objectively verified against SYNOP data), and objective verification of the deterministic forecasts initialised with the KENDA analyses for each of the three experiments.
Resumo:
Recenti sviluppi nella progettazione di impianti di luce di sincrotrone di quarta generazione riguardano la produzione di fasci di luce nella banda dei raggi X con elevate caratteristiche in termini di brillanza, coerenza e impulsi estremamente brevi ( femtosecondo ) . I principali schemi per la produzione della radiazione XFEL riguardano l’impiego di ondulatori con differenti modalità di seeding. L’utilizzo dei fasci di radiazione XFEL nelle linee di luce per applicazioni di imaging, spettroscopia e diffrazione, ha determinato un costante sforzo sia nello sviluppo di dispositivi ottici in grado di selezionare e focalizzare il fascio su dimensioni nanometriche, che nella sperimentazione di tecniche “lensless” in grado di superare i limiti imposti dall’utilizzo di tali dispositivi . I risultati ottenuti nella produzione dei fasci hanno consentito nuove possibilità di indagine nella struttura dei materiali su distanze atomiche nella definizione, senza precedenti di dettagli su scale temporali del femtosecondo, permettendo lo studio, non solo di strutture atomiche in condizioni di equilibrio stabile quanto di stati della materia velocemente dinamici e di non equilibrio. CXDI e Spettroscopia Strutturale Ultraveloce risolte in tempo sono alcune delle tecniche in cui l’utilizzo della radiazione XFEL apre nuove possibilità di indagine agli stati transienti della materia permettendo la ricostruzione della dinamica di processi chimico –fisici su intervalli temporali finora inaccessibili .