6 resultados para passive stiffness
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.
Resumo:
The work of this thesis is on the implementation of a variable stiffness joint antagonistically actuated by a couple of twisted-string actuator (TSA). This type of joint is possible to be applied in the field of robotics, like UB Hand IV (the anthropomorphic robotic hand developed by University of Bologna). The purposes of the activities are to build the joint dynamic model and simultaneously control the position and stiffness. Three different control approaches (Feedback linearization, PID, PID+Feedforward) are proposed and validated in simulation. To improve the properties of joint stiffness, a joint with elastic element is taken into account and discussed. To the end, the experimental setup that has been developed for the experimental validation of the proposed control approaches.
Resumo:
L'interazione in maniera sicura e compliante è una caratteristica sempre più richiesta per i sistemi robotici. La modellazione di sistemi eseguita tramite l'uso di sistemi port-Hamiltoninani permette di comprendere cosa avviene a livello energetico durante l'interazione e aiuta nella progettazinoe di un controllore tale che il comportamento del sistema controllato sia passivo e sicuro durante essa. Ciò sfocia nel cosiddetto Controllore Intrinsicamente Passivo (IPC). Dal momento che questo un controllo impone la rigidezza desiderata al sistema controllato, è possibile, tra le altre cose, replicare il comportamento del dispositivo RCC (Centro Remoto di Complianza) e di migliorarlo in modo tale che durante l'azione di peg-in-hole il buco sia meno sollecitato dal robot.
Resumo:
Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.