28 resultados para non normalità operatori lineari matrici non normali autovalori crescita transitoria pseudospettro

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi vengono studiati gli effetti della non-normalità di un operatore all'interno di sistemi dinamici regolati da sistemi di equazioni differenziali ordinarie. Viene studiata la stabilità delle soluzioni, in particolare si approfondiscono fenomeni quali le crescite transitorie. In seguito vengono forniti strumenti grafici come gli Pseudospettri capaci di scoprire e quantificare tali "anomalie". I concetti studiati vengono poi applicati alla teoria dell'ecologia delle popolazioni utilizzando una generalizzazione delle equazioni di Lotka-Volterra. Modelli e matrici vengono implementate in Matlab mentre i risultati grafici sono ottenuti con il Toolbox Eigtool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La trattazione che segue fornisce un'introduzione agli operatori lineari. Il primo capitolo contiene dei cenni sugli spazi di Hilbert di dimensione infinita, in modo da poter lavorare con operatori definiti non solo su spazi finito dimensionali, che sono generalmente rappresentati da matrici. Nel secondo capitolo si prosegue con lo studio degli operatori lineari limitati, proponendo come esempio l'operatore di proiezione. Viene definito anche l'importante concetto di operatore aggiunto, generalizzato nel capitolo successivo. Il capitolo finale tratta gli operatori non limitati, che possono essere analizzati con più facilità se soddisfano una proprietà topologica, che è la chiusura. Si affronta anche il concetto di spettro di un operatore, soprattutto nel caso di un operatore autoaggiunto, concludendo con l' esempio di un importante operatore, cioè l'operatore differenziale, fondamentale in meccanica quantistica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studio del problema evolutivo degenere in uno spazio di Banach, con condizioni di tipo parabolico, attraverso la generalizzazione della teoria dei semigruppi al caso di operatori multivoci. Il problema viene dunque ridotto a un'equazione multivoca. Si riporta inoltre come esempio l'equazione del calore di Poisson.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All'interno della tesi viene analizzato il principio del massimo per l'operatore di Laplace e per operatori lineari ellittici differenziali. Attraverso l'utilizzo delle formule di media si dimostra il principio del massimo forte e debole per l'operatore di Laplace e si analizzano le sue applicazioni, quali la disuguaglianza di Harnack, il teorema di Liouville e il teorema fondamentale dell'algebra. Successivamente si vanno a dimostrare il principio del massimo debole e, tramite il lemma di Hopf, il principio del massimo forte, per operatori lineari ellittici differenziali. Infine si studia il caso dell'unicità delle soluzioni dei problemi di Dirichlet per operatori lineari ellittici differenziali, sfruttando il principio del massimo debole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primi elementi della teoria dei semigruppi di operatori lineari e applicazione del metodo dei semigruppi alle equazioni differenziali alle derivate parziali di tipo parabolico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi riportiamo le definizioni ed i risultati principali relativi alla corrispondenza tra le successioni di polinomi di tipo binomiale (particolari basi dello spazio dei polinomi a coefficienti reali) e gli operatori delta, cioè operatori lineari sullo spazio dei polinomi che commutano con gli operatori di traslazione e il cui nucleo è costituito dai polinomi costanti. Nel capitolo 1 richiamiamo i concetti fondamentali sull'algebra delle serie formali e definiamo l'algebra degli operatori lineari invarianti per traslazione, dimostrando in particolare l'isomorfismo tra queste algebre. Nel capitolo 2, dopo aver dimostrato l'unicità della successione di base relativa ad un operatore delta, ricaviamo come esempio le successioni di base di tre operatori delta, che useremo durante tutto il capitolo: l'operatore derivata, l'operatore di differenza in avanti e l'operatore di differenza all'indietro. Arriviamo quindi a dimostrare un importante risultato, il Primo Teorema di Sviluppo, in cui facciamo vedere come le potenze di un operatore delta siano una base per l'algebra degli operatori invarianti per traslazione. Introducendo poi le successioni di Sheffer, possiamo dimostrare anche il Secondo Teorema di Sviluppo in cui esplicitiamo l'azione di un operatore invariante per traslazione su un polinomio, tramite un operatore delta fissato e una sua successione di Sheffer. Nell'ultima parte della tesi presentiamo i formalismi e alcune semplici operazioni del calcolo umbrale, che useremo per determinare le cosiddette costanti di connessione, ovvero le costanti che definiscono lo sviluppo di una successione binomiale in funzione di un'altra successione binomiale usata come base dello spazio dei polinomi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sono studiati nel dettaglio, sia dal punto di vista matematico che con un certo inquadramento storico, i capitoli quinto e sesto del volume ''Le operazioni distributive e le loro applicazioni all'analisi'' di Salvatore Pincherle. La tesi si inserisce in un progetto più ampio di studio ed è già stata preceduta da un'altra tesi magistrale dedicata ai primi capitoli del libro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tesi tratta alcuni dei principali filtri di diffusione non lineari per il problema di denoising di immagini. In particolare pertendo dalla formulazione del problema come minimizzazione di un funzionale introduce modelli allo stato dell'arte come il filtro Lineare, di Perona Malik, alle Variazioni Totali e per Curvatura; infine un nuovo modello diffusivo sviluppato dal prof.Antonio Marquina è per la prima volta applicato al problema di denoising. Seguono numerosi schemi numerici alle differenze finite per risolverli, che generano procedimenti iterativi espliciti, impliciti e AOS. Verrà analizzato per la prima volta per il problema di denoising uno schema conservativo al prim'ordine e di ordine superiore, dopo evere proposto una modifica per rendere idoneo la funzione diffusività. Infine vi è un ampio capitolo con considerazioni numeriche e visive sui risultati sperimentali ottenuti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’obiettivo fondamentale è di investigare l’effetto di differenti distribuzioni delle proprietà di dissipatori fluido viscosi non lineari lungo l’altezza delle strutture per il retrofit di telai in cemento armato esistenti. Le differenti distribuzioni sono calcolate sulla base dello stesso smorzamento supplementare. Nella fase di progetto si è confrontato la somma dei coefficienti di distribuzione in modo da valutare la loro efficacia. I risultati di questa fase sono poi controllati attraverso estensive analisi dinamiche non lineari, in termini di spostamenti di piano, spostamenti d’interpiano e forze nei dissipatori, considerando la non linearità della struttura e dei dissipatori. I casi di studio sono telai bidimensionali in cemento armato, caratterizzato da un differente numero di piani (3, 6 e 9 piani) e anche da differenti proprietà in termini di regolarità in elevazione. Un altro proposito è quindi investigare l’effetto della distribuzione verticale dei dissipatori per telai regolari e irregolari.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Influenza della deformabilità di piano in analisi non lineari di edifici in C.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tomosintesi digitale computerizzata è una particolare tecnica che permette di ricostruire una rappresentazione 3D di un oggetto, con un numero finito di proiezioni su un range angolare limitato, sfruttando le convenzionali attrezzature digitali a raggi X. In questa tesi è stato descritto un modello matematico per la ricostruzione dell’immagine della mammella nella tomosintesi digitale polienergetica che tiene conto della varietà di materiali che compongono l’oggetto e della natura polienergetica del fascio di raggi X. Utilizzando questo modello polienergetico-multimateriale, la ricostruzione dell’immagine di tomosintesi è stata ricondotta alla formulazione di un problema dei minimi quadrati non lineare su larga scala e risolverlo ha permesso la ricostruzione delle percentuali dei materiali del volume assegnato. Nelle sperimentazioni sono stati implementati il metodo del gradiente, il metodo di Gauss-Newton ed il metodo di Gauss-Newton CGLS. E' stato anche utilizzato l’algoritmo trust region reflective implementato nella funzione lsqnonlin di MATLAB. Il problema della ricostruzione dell'immagine di tomosintesi è stato risolto utilizzando questi quattro metodi ed i risultati ottenuti sono stati confrontati tra di loro.