1 resultado para meandering tori
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Definizioni e enunciati riguardo al gruppo fondamentale, alle azioni di gruppo, ai rivestimenti, alle varietà topologiche, differenziabili e riemanniane, alle isometrie e ai gruppi discreti di isometrie. Approfondimento riguardo alle superfici connesse, compatte e orientabili con classificazione topologica, definizione di curvatura gaussiana con classificazione delle superfici in base al valore della curvatura, teorema di Killing-Hopf, teorema di uniformizzazione, enunciato del teorema che verrà dimostrato: la sfera è l'unica superficie connessa, compatta e orientabile ellittica, il toro è l'unica piatta, le somme connesse di g tori (g>1) sono iperboliche. Descrizione del piano euclideo con relativa metrica, descrizione delle sue isometrie, teorema di Chasles con dimostrazione, dimostrazione del toro come unica superficie connessa, compatta e orientabile piatta. Descrizione della sfera con relativa metrica, descrizione delle sue isometrie, dimostrazione della semplicità di SO(3), dimostrazione della sfera come unica superficie connessa, compatta e orientabile ellittica. Descrizione di due modelli del piano iperbolico, descrizione delle sue isometrie, dimostrazione del fatto che le somme connesse di g tori (g>1) sono iperboliche. Definizione di gruppo Fuchsiano e di spazio di Teichmuller.