8 resultados para log-based cost analysis

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato viene presentato un nuovo modello di costo per le matrici per estrusione basato su un approccio feature-based. Nel particolare si è cercato di definire il costo di questi prodotti sulla base delle loro caratteristiche geometriche e tecnologiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is focused on introducing basic MIMO-based and Massive MIMO-based systems and their possible benefits. Then going through the implementation options that we have, according to 3GPP standards, for 5G systems and how the transition is done from a non-standalone 5G RAN to a completely standalone 5G RAN. Having introduced the above-mentioned subjects and providing some definition of telecommunications principles, we move forward to a more technical analysis of the Capacity, Throughput, Power consumption, and Costs. Comparing all the mentioned parameters between a Massive-MIMO-based system and a MIMO-based system. In the analysis of power consumption and costs, we also introduce the concept of virtualization and its benefits in terms of both power and costs. Finally, we try to justify a trade-off between having a more reliable system with a high capacity and throughput while keeping the costs as low as possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research and the activities presented in the following thesis report have been led at the California Polytechnic State University (US) under the supervision of Prof. Jordi Puig Suari. The objective of the research has been the study of magnetic actuators for nanosatellite attitude control, called magnetorquer. Theese actuators are generally divided in three different kinds: air core torquer, embedded coil and torquerod. In a first phase of the activity, each technology has been analyzed, defining advantages and disadvantages, determining manufacturing procedures and creating mathematical model and designing equation. Dimensioning tools have been then implemented in numerical software to create an instrument that permits to determine the optimal configuration for defined requirements and constraints. In a second phase of the activities the models created have been validated exploiting prototypes and proper instruments for measurements. The instruments and the material exploited for experiments and prototyping have been provided by the PolySat and CubeSat laboratories. The results obtained led to the definition of a complete designing tool and procedure for nanosatellite magnetic actuators, introducing a cost analysis for each kind of solution. The models and the tools have been maintained fully parametric in order to offer a universal re-scalable instrument for satellite of different dimension class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Rail transportation has significant importance in the future world. This importance is tightly bounded to accessible, sustainable, efficient and safe railway systems. Precise positioning in railway applications is essential for increasing railway traffic, train-track control, collision avoidance, train management and autonomous train driving. Hence, precise train positioning is a safety-critical application. Nowadays, positioning in railway applications highly depends on a cellular-based system called GSM-R, a railway-specific version of Global System for Mobile Communications (GSM). However, GSM-R is a relatively outdated technology and does not provide enough capacity and precision demanded by future railway networks. One option for positioning is mounting Global Navigation Satellite System (GNSS) receivers on trains as a low-cost solution. Nevertheless, GNSS can not provide continuous service due to signal interruption by harsh environments, tunnels etc. Another option is exploiting cellular-based positioning methods. The most recent cellular technology, 5G, provides high network capacity, low latency, high accuracy and high availability suitable for train positioning. In this thesis, an approach to 5G-based positioning for railway systems is discussed and simulated. Observed Time Difference of Arrival (OTDOA) method and 5G Positioning Reference Signal (PRS) are used. Simulations run using MATLAB, based on existing code developed for 5G positioning by extending it for Non Line of Sight (NLOS) link detection and base station exclusion algorithms. Performance analysis for different configurations is completed. Results show that efficient NLOS detection improves positioning accuracy and implementing a base station exclusion algorithm helps for further increase.