75 resultados para infinito Cantor numeri transfiniti

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente tesi si occupa, da un punto di vista matematico e filosofico, dello studio dei numeri transfiniti introdotti da Georg Cantor. Vengono introdotti i concetti di numero cardinale ed ordinale, la loro aritmetica ed i principali risultati riguardo al concetto di insieme numerabile. Si discutono le nozioni di infinito potenziale ed attuale e quella di esistenza secondo la concezione di Cantor. Viene infine presentata l'induzione transfinita, una generalizzazione al caso transfinito del principio di induzione matematica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo elaborato realizzato assieme alla creazione di un link nel sito "progettomatematic@" tratta dell'infinito in tre modi diversi: la storia, l'applicazione ai frattali e alla crittografia. Inizia con una breve storia dai greci all'antinomia di Russel; poi si parla dei frattali in natura, di misura e dimensione di Hausdorff, polvere di Cantor e fiocco di neve di Koch. Infine si trova un riassunto dei cifrari storici famosi, con particolare attenzione al cifrario di Vernam, alla teoria dell'entropia di Shannon e alla dimostrazione che otp ha sicurezza assoluta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breve elaborato sulla teoria degli insiemi a partire dagli assiomi ZFC con introduzione ai numeri ordinali e cardinali e presentazione dell'ipotesi del continuo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi prende spunto da due laboratori del Piano di Lauree Scientifiche, "Numeri primi e crittografia" e "Giocare con i numeri". Si approfondiscono i problemi additivi riguardanti i numeri primi. Questi sono stati scelti per due principali motivi: la semplicità dei contenuti, che possono essere compresi dagli studenti di tutti i tipi di scuola, e la possibilità di prestarsi bene ad un approccio di tipo laboratoriale da parte degli studenti, adattabile alle diverse preparazioni matematiche e al tempo stesso in grado di stimolare curiosità su problemi ancora irrisolti. Si mostreranno metodi di risoluzione di tipo elementare ma anche metodi che coinvolgono l'analisi complessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopo una breve introduzione storica ci si occupa del problema della dimostrazione della infinità dei numeri primi. Di questa si espongono cinque dimostrazioni diverse trovate nell'arco di più di duemila anni. La tesi è completata dall'esposizione di una serie di criteri di divisibilità utili nell'insegnamento primario e secondario completamente dimostrati.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.