6 resultados para functionalization

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Master thesis presents the results obtained in the curricular traineeship, carried out within the laboratories of the Department of Chemistry of the University of Bergen, during the Erasmus period, and within the Department of Industrial Chemistry of the University of Bologna. The project followed in Bergen concerned the synthesis of key intermediates used for the functionalization of the backbone of imidazole, using N,N'- diiodo-5,5-dimethylhydantoin (“DIH”) as an iodinating agent, and employing an innovative kind of chemical reactor: the “Multijet Oscillating Disc Millireactor” (MJOD Reactor). Afterwards, the work performed in Bologna consisted in verifying the stability in solution of the above mentioned N,N'-diiodo-5,5-dimethylhydantoin utilising spectrophotometric techniques and High Performance Liquid Chromatography analyses (HPLC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of pyrazole and lactam-based molecules in medical and pharmaceutical fields is underlined by the multitude of active ingredients on trade, such as Sildenafil or Apixaban, by Pfizer. In this work, a synthesis of an organic molecule with promising anticancer activity has been developed. This molecular scaffold is characterized by a δ-lactam-fused pyrazolic core, with a well-known biological activity and amenable of further functionalization. The synthetic strategy adopted for the obtainment of the core was based on a 1,3-dipolar cycloaddition of a nitrilimine with an α,β-unsaturated δ-lactam. Secondly, in order to give the final compound an elevated pharmacological activity, a functionalization with a double “side chain”, namely molecular fragment able to improve the interaction with particular biological receptors, was achieved. The target compound was thus obtained, with a highly convergent synthesis, and will be tested for antiproliferative activities towards different cellular lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of procedures for the iridium catalyzed C-H borylation of 1-aryl pyrazolopyrimidines and 1-aryl indazoles is reported. Investigation on the activity of the catalyst revealed the combination of an iridium (I) precursor and tetramethylphenantroline as the best catalytic system. Moreover, the procedures are regioselective resulting in the selective borylation of different C-H bonds within the substrates. The application of C-H borylation to late stage functionalization is demonstrated: a biologically active compound in AstraZeneca's project underwent tandem borylation/oxidation reaction, in order to obtain a functionalized product containing an OH group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of alcohols and olefins is a pivotal reaction in organic synthesis. However, traditional oxidants are toxic and they often release a considerable amounts of by-products. Here, two IronIII-based systems are shown as oxidative catalyst, working in mild conditions with hydrogen peroxide as primary oxidant. An efficient catalytic system for the selective oxidation of several alcohols to their corresponding aldehydes and ketones was developed and characterized, [Fe(phen)2Cl2]NO3 (phen=1,10-Phenantroline). It was demonstrated that the adoption of a buffered aqueous solution is of crucial importance to ensure both considerable activity and selectivity.The Iron - Thymine-1-acetic acid in-situ complex was studied as catalyst in alcohol oxidations and C-H oxidative functionalization, involving hydrogen peroxide as primary oxidant in mild reaction conditions. The catalytic ability in alcohol oxidations was investigated by Density Functional Theory calculations, however the catalyst still has uncertain structure. The system shows satisfactory activity in alcohol oxidation and aliphatic rings functionalization. The Fe-THA system was studied in cyclohexene oxidation and oxidative halogenations. Halide salts such as NBu4X and NH4X were introduced in the catalytic system as halogens source to obtain cyclohexene derivatives such as halohydrins, important synthetic intermediates.The purpose of this dissertation is to contribute in testing new catalytic systems for alcohol oxidations and C-H functionalization. In particular, most of the efforts in this work focus on studying the Iron - Thymine-1-acetic acid (THA) systems as non-heme oxidative model, which present: •an iron metal centre(s) as a coordinative active site, •hydrogen peroxide as a primary oxidant, •THA as an eco-friendly, biocompatible, low cost coordinating ligand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study towards the synthesis of a new fulvestrant analogue with improved bioavailability was carried out. In this work a twelve-step synthetic route starting from β-estradiol was optimized and a palladium (Pd)-catalyzed endo-selective Heck reaction for the functionalization of an advanced intermediate was investigated.