7 resultados para environmental impact assessment
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The high energy consumption caused by the building sector and the continuous growth and ageing of the existing housing stock show the importance of housing renovation to improve the quality of the environment. This research compares the environmental performance of flat roof systems (insulation, roofing membrane and covering layer) using Life Cycle Assessment (LCA). The aim is to give indications on how to improve the environmental performance of housing. This research uses a reference building located in the Netherlands and considers environmental impacts related to materials, energy consumption for heating and maintenance activities. It indicates impact scores for each material taking into account interconnections between the layers and between the different parts of the life cycle. It compares the environmental and economic performances of PV panels and of different materials and thermal resistance values for the insulation. These comparisons show that PV panels are convenient from an environmental and economic point of view. The same is true for the insulation layer, especially for materials as PIR (polyisocyanurate) and EPS (expanded polystyrene). It shows that energy consumption for heating causes a larger share of impact scores than production of the materials and maintenance activities. The insulation also causes larger impact scores comparing to roofing membrane and covering layer. The results show which materials are preferable for flat roof renovation and what causes the largest shares of impact. This gives indication to the roofers and to other stakeholders about how to reduce the environmental impact of the existing housing stock.
Resumo:
The current work has for object the improvement and the maintenance of the School of Engineering and Architecture in Via Terracini 28 (Bologna), with the prospective to maximize the operative efficiency reducing to the minimum the environmental impact and the costs. In order to realize this work the LEED certification has been used. LEED (Leadership in Energy and Environmental Design) is a certification system of the buildings. It was born in United States by the U.S. Green Building Council (USGBC)
Resumo:
The growing need to assess the environmental status of the Mediterranean coastal marine habitats and the large availability of data collected by Reef Check Italia onlus (RCI) volunteers suggest the possibility to develop innovative and reliable indices that may support decision makers in applying conservation strategies. The aims of this study were to check the reliability of data collected by RCI volunteers, analyse the spatial and temporal distribution of RCI available data, resume the knowledge on the biology and ecology of the monitored species, and develop innovative indices to asses the ecological quality of Mediterranean subtidal rocky shores and coralligenous habitats. Subtidal rocky shores and coralligenous were chosen because these are the habitats more attractive for divers; therefore mlst data are referring to them, moreover subtidal rocky bottom are strongly affected by coastal urbanisation, land use, fishing and tourist activities, that increase pollution, turbidity and sedimentation. Non-indigenous species (NIS) have been recognized as a major threat to the integrity of Mediterranean native communities because of their proliferation, spread and impact on resident communities. Monitoring of NIS’ spreading dynamics at the basin spatial scale is difficult but urgent. According to a field test, the training provided by RCI appears adequate to obtain reliable data by volunteers. Based on data collected by RCI volunteers, three main categories of indices were developed: indices based on species diversity, indices on the occurrence non-indigenous species, and indices on species sensitive toward physical, chemical and biological disturbances. As case studies, indices were applied to stretches of coastline defined according to management criteria (province territories and marine protected areas). The assessments of ecological quality in the Tavolara Marine Protected Area using the species sensitivities index were consisten with those previously obtained with traditional methods.
Resumo:
The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.
Resumo:
Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.